Setup of an experimental rig for Microfiltration of urine and faecally contaminated urine

J. Ouma*, S. Septien, K. Velkushanova, C.A. Buckley** **Pollution Research Group** School of Chemical Engineering, University of KwaZulu-Natal, South Africa

*214581905@stu.ukzn.ac.za, **BUCKLEY@ukzn.ac.za

Context	Research objectives	Purpose					
		Treatment of urine from urinals and from UDD toilets					
 This is a project under the 'Reinvent the Toilet Challenge (RTTC)' which is funded by the Bill and Melinda Gates Foundation (BMGF). Objectives of RTTC include: ➢ To develop a new toilet technology for processing human waste without links to ; 	This study aims to use pressure driven microfiltration membranes to determine the properties of stored urine and faecally contaminated urine (feed stock) for the purpose of contaminant removal and recovery water and nutrients.	UD-Toilet					
 water energy sewer lines Operation at a costs affordable to the poor zones in 	This research focuses on 3 main objectives: ➤ Permeability of membranes during filtration of the feed stock	 To remove organic contaminants and pathogens To optimise other treatment process. 					

> Characterization of the feed stock and rejection of

Fouling and flux recovery after membrane cleaning.

Contaminants

Pressure gauge

Magnetic stirrer

Mass balance

Beaker

Pc

Stirred cell (Amicon cell)

Α

В

- developing countries
- Removal of pathogens from human waste and recover valuable resources such as energy, clean water, and nutrients

Water for toilet

Permeate/

filtrate

Methods

Materials

• PES membranes, NMWL 500 kDa, 76 mm diameter

Urine/faecally

urine

contaminated -

- Amicon stirred cell for holding the membrane
- Magnetic stirrer for stirring the Amicon cell
- Permeate weighing balance connected to the Pc
- Pc for continuous logging of data via Lab view software

Experimental Conditions

Other

🛏 treatment 🛁

processes

• Feed streams : urine and faecally contaminated urine

Nanofiltration,

reverse osmosis,

forward osmosis,

distillation

- Room temperature
- Dead-end filtration mode
- Pressure of 20-70 kPa
- Clean membrane for each stream
- Fouled membrane cleaning using 0.1 M NaOH

	Characterization of the feedstock													
Chemical analyses on urine and faecally contaminated urine								Graphical presentation of faecally contaminated urine	Graphical presentation of contaminants in urine					
% of faecal contamination	Units	0	1	2	5	10	20	16 000 Y 14 000 14	4 50 4 00	0	CHEMIC	AL ANALYSES OF STOP	ED URINE	Chloride
COD	mg/L	2 367	3 305	3 735	4 256	8 666	14 111	12 000 Lectrical conductivity (ms/cm)	3 50 S O. 3 00	0				
Osmolality	mOsmol/kg	650	658	663	656	657	652	0 10000	Z 50	0		+ COD		
Osmotic Pressure	kPa	1 631	1 604	1 616	1 600	1 601	1 590	0 8 000 NOE 6 000	00 2 ASUREI	0	Osr	notic Pressure		
Chloride	mg/L	3 800	4 450	3 847	3 880	3 920	3 903		\leq 100	0				
Total Phosphorous	mg/L	540	308	309	310	311	315	4 000 * * Y * * Y * * Y * *	50		Osmolality Total Phosphates			
Electrical conductivity	/ ms/cm	30	29	29	28	28	27			0 и рн О	1 000	2 000	3 000	4 000
рН		8.6	8.7	8.7	8.7	8.7	8.7	0 5 10 15 20 25 % CONTAMINATION	5			ITERATURE VALUE	S	

Only COD increases with contamination

References

Experimental results compatible with literature

Acknowledgements

Outputs

- The set up of the experiment is completed and first experiments are on course.
- Faecal contamination increases the amount of COD in urine while there is no significant change in other parameters.
- It is expected that flux will increase with increase in transmembrane pressure and decrease with increase in time.
- Permeability of the membranes is also expected to decrease with fouling.
- PILLAY, S. 2011. Membrane Fouling Mechanisms in a Membrane-Coupled Anaerobic Baffled Reactor (ABR) Treating a Complex Wastewater. PhD, University of KwaZuluNatal.
- PRONK, W. 2009. Options for urine treatment in developing countries. Eawag: Swiss Federal Institute of Aquatic Science and Technology, 248, 360-368.
- UDERT, K. M., LARSEN, T. A., BIEBOW, M. & GUJER, W. 2003. Urea hydrolysis and precipitation dynamics in a urine-collecting system. Water Research, 37, 2571-2582.
- My gratitude goes to the BMGF for funding the project and making it possible.
- I would also like to thank my supervisors, Dr. S. Septien, Dr. K. Velkushanova, Pr. CA Buckley for their guidance and contribution to this project.
- I extend my sincere gratitude to Ms. M. Reddy, PRG lab technician for the training on chemical analyses and general lab safety rules.