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ABSTRACT 

The Ashley Drive break pressure tank (BPT-20 𝑀ℓ) has been installed on Durban’s Western 

Aqueduct. Its purpose is to release the 20 bar gravity head of the 1.4m trunk main supply from 

Umgeni Water at Umlaas Road. The expected peak conditions (400 𝑀ℓ/𝑑𝑎𝑦) will only allow 

14 minutes for valves to close, yet they must be moved slowly in order to avoid dynamic shock. 

The high pressure upstream supply is admitted to the BPT through a set of thee parallel sleeve 

valves, which are in a control loop to maintain level in the BPT against the downstream draw. 

These cavitation-resistant valves cannot be operated without electrical power, so an added 

complication of the design is a set of 3 hydraulically-operated globe valves which switch in at 

extreme tank levels. 

Though the commissioning of the Ashley Drive BPT is already in progress, it is important to 

simulate the overall operation of the system for projected future flows, in order to detect 

possible operational problems, and to build in solutions if necessary. Optimisations include 

such issues as the valve closing sequence and speeds, settling level variations, and smoothness 

of the draw from Umgeni Water. 

The simulation study involved the modelling of the trunk main, the Ashley Drive BPT, the 

downstream Wyebank BPT and the reservoirs drawing from the trunk main before and after 

these two BPTs. Data handling techniques were developed in order to formulate the daily 

demand profiles for each of the reservoirs. Design information was used to calculate the 

hydraulic parameters that featured in the simulation, and to determine the residual pressures at 

the inlet valve sets of the BPTs. Implicit calculations with the Newton-Raphson iterative 

method were employed in order to obtain a pressure distribution across the BPT valves. Simple 

mechanisms were built into the MATLAB® program in order to accommodate the complexities 

of the system, e.g. the possibility of power loss, valve or BPT chamber maintenance, or the 

deliberately slowed movement of the valves to avoid pressure surges within the pipeline. 

The analysis of the results of the simulation study involved examining the efficacy of the 

control set-points and valve sequencing, and determining whether these settings satisfy the 

design specifications. Random and anticipated scenario testing was carried out within the study 

in order to accommodate for situations such as electricity outages or unusual consumer 

demands. The BPT control system was analysed to assess its adequacy and the risks associated 

with the proposed staggered sleeve valve control scheme. 
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The results of this investigation are presented as multiple time-sequence graphs depicting the 

results of the different scenario tests. Support for the design concept, additional 

recommendations and indications of adverse scenarios, have emerged from this study. The 

original design is found to be capable of duty within the ranges of expected normal operation 

in 2036, and the system was observed to be capable of conveying a throughput greater than 

that of the design. The normal operating level was also found to be higher than intended, and 

valve oscillations were deemed a significant concern. It was established that operation with 

just two sleeve valves active within each BPT would achieve better correspondence to the 

design specifications. The revised control system (Control 2.0) was found to be better suited to 

the application, but was also diagnosed to be too slow to react under certain circumstances.  
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1 INTRODUCTION 

The right of access to water, for every citizen, is enshrined in Act 108 of 1996, Chapter 2 of 

the Bill of Rights of the South African Constitution. Section 27.1 States that “Everyone has the 

right to have access to... sufficient food and water and ...”. According to Section 27.2 of this 

Act, it is within the duties of the state to enact “reasonable legislative and other measures, 

within its available resources to achieve the progressive realization of these rights.”(Muller, 

2011). Pursuant to this legislation, The Water Services Act of 1997 and The National Water 

Act of 1998, provide the general structure for the framework within which water supply 

services and water resource management and usage. In addition to this, the National Water Act 

aims to promote equitable access to water. The role of municipalities and water service 

providers are governed by the Water Services Act of 1997, whose objectives include, but are 

not limited to, setting of national standards for tariffs, the Establishment of water services 

institutions and water boards and monitoring service provision. The Municipal Structures Act 

of 1998 together with the Municipal Structures Amendment Act of 2000, determine the 

separation of responsibilities and functions between municipalities, including sewage disposal, 

bulk treatment and bulk water supply. Category C (District) municipalities are allocated the 

responsibilities of “potable water systems” and “domestic sewage and wastewater” 

(Department of Water Affairs and Forestry., 2009). 

The eThekwini Water and Sanitation Unit (EWS) is an award-winning, pioneering unit of the 

eThekwini (Metropolitan) municipality whose responsibilities include the provision of potable 

water and sanitation to residents within the municipal locality. The municipality includes 
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Durban and surrounding towns, and as the third largest municipality in South Africa, caters to 

3 442 398 people (2011 census) (eThekwini Municipality., 2013). In support of the pioneering 

aims of EWS, a co-operative research agreement with UKZN is currently in place (eThekwini 

Municipality., 2012). 

EWS has an extensive infrastructure network that facilitates the efficient distribution of potable 

water that ensures the availability of a distribution point within 200 m of each resident. Figure 

1 is a GIS mapping of the existing water distribution infrastructure. Bulk water is either 

purchased from Umgeni Water, a state-owned parastatal, or sourced through one of the four 

EWS-operated water treatment plants (eThekwini Municipality., 2011b).  

Umhlanga Rocks

Virginia Airport

Isipingo

Airport

Amanzimtoti

Illovo

Umkomaas

Umzinto Scottsburgh

 

1.1 Aqueduct Projects 

A spate in urbanization has vastly increased the population within the jurisdictional locality of 

EWS. In the period spanning 2000-2014 alone, 1.3 million extra people had been granted 

access to piped water facilities. In 2010 alone, 30 000 families were connected to the piped 

water network, and by 2030, a 20% increase in the eThekwini metropolitan population is 

Figure 1 - GIS mapping of the eThekwini water distribution network (eThekwini 

Municipality., 2011b)  
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forecasted. This has led to a surge in the demand for bulk water and has stressed existing, often 

dated, infrastructure (SAinfo reporter., 2014). In response to the challenges posed by the ever 

increasing demand for water, and a forecasted impending catastrophic water supply shortage, 

EWS has commissioned two major aqueduct projects – The Western Aqueduct Project and The 

Northern Aqueduct Augmentation Project. These projects are intended to bolster supply 

capacity in the long term (30 years – 2036). 

The Northern Aqueduct Augmentation Project consists of three phases, each prioritised 

according to its distinct purpose. The project was conceived due to the near-capacity operation 

of the existing northern aqueduct bulk supply lines, particularly in the Ntuzuma, Mzinyathi and 

Senzokuhle areas, and a resulting low residual pressure issue in the Umhlanga region. This 

project also establishes the supply network to the Cornubia Housing development (Phase One), 

and connects the Western and Northern Aqueducts (Phase Two). Phase Three includes the 

construction of pipelines, reservoirs, a pump booster station and a pumping main (Macleod, 

2013). 

The Western Aqueduct Project was conceived in order to relieve the excess loading and 

resultant capacity issues that plagued the Outer West areas. Internal pipe damage and erosion 

on existing infrastructure have already been observed as a result of excess supply velocities 

which result from demand flows that exceed the design limits. In addition to this, supplemental 

supply (shed demand) had become necessary to meet increased demands in the high-density 

residential areas (Ntuzuma and surrounding areas), as the pumping stations that supply the 

areas north of the Durban Heights Waterworks had reached capacity. 
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Umlaas 
Road Cato Ridge

Drummond

Hillcrest Kloof

Pinetown

Tshelmnyama

Inanda

Marianhill 
Toll Plaza

WA route

Toll plaza

Reference
N3

Old Main Rd
Urban areas

Ashley Drive 
BPT Wyebank 

Road BPT

The eventual design route for the Western Aqueduct bulk supply route thus begins at Umlaas 

Road (west- near Cato Ridge), goes through the Inner West and Outer west areas, and ends to 

the North at Ntuzuma. The pipeline tends to follow the N3 highway from Umlaas Road to 

Inchanga, where the two diverge, with the pipeline cutting through the Hillcrest area. The 

pipeline then tracks the path of the M13 freeway, through Wyebank and Mount Moriah until it 

ends at Ntuzuma (Facts About Durban., 2009). Figure 2 is the proposed route for the Western 

Aqueduct bulk supply pipeline. The total estimated cost of the project is R1.2 Billion Rand 

(eThekwini Municipality., 2011b). The total pipeline length is 75 km and the design 

incorporates two break pressure tanks (BPT). The Ashley Drive (Kloof) break pressure tank 

has a total capacity of 20 𝑀ℓ and the Wyebank break pressure tank has a capacity of 10 𝑀ℓ. 

The Western Aqueduct is envisaged to fortify existing water supply by boosting supply 

capacity by 400 𝑀ℓ/𝑑𝑎𝑦 . The total consumption for Durban in 2011 was 950 𝑀ℓ/𝑑𝑎𝑦 

(eThekwini Municipality., 2011a). The project is expected to reach completion and be fully 

operational by mid-2017 (Tancott, 2014). The initial portion of the Western Aqueduct pipeline 

(Inchanga to Ashley Drive) began commissioning during February 2015, and the revised 

estimated completion date for the Ashley Drive BPT, at the time, was the third quarter of 2015. 

The contract for the construction of the Wyebank BPT was awarded during the third quarter of 

Figure 2 - Western Aqueduct route from Umlaas Road to Ntuzuma (eThekwini 

Municipality., 2011b). 
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2015. The construction of the trunk mains from the Ashley Drive BPT to NR5 (Ntuzuma 

Reservoir 5) is in progress. The pipelines to Haygarth Road and Tshelnyama were scheduled 

to start in April 2015 (Daily News Reporter., 2015). The BPTs were initially intended to serve 

as hydroelectric generators, in order to supply “green energy” to the communities surrounding 

the tanks (eThekwini Municipality., 2011a).  

The route was selected primarily based upon the following criteria: 

 To incorporate as much of the existing infrastructure within the current registered 

infrastructural network. 

 To minimize the use of pumping stations in order to avoid extraneous energy usage and 

to circumvent potential supply disruptions due to pump failures/maintenance.  

 To avoid impacting and destroying cultural and heritage sites, and environmentally 

sensitive areas. 

Measures were also devised to avoid public disruption. These measure included rapid 

reinstatement of the working corridor, the sealing of the corridor to prevent animal access and 

restriction of the latest working time to 18:00 in residential areas. Where roads were affected, 

they were also repaired immediately (Facts About Durban., 2009). 

Despite the claimed meticulous adherence to protocols in the tender awarding process, the 

project implementation was delayed by an entire year. Three rejected bidders objected against 

the decision of the eThekwini Municipality to award the tender to the EsorFranki and Cycad 

Pipelines joint venture. A court application was also lodged against the municipality. Factors 

purported to have been considered in the evaluation of tenders include the BEE status of the 

bidder, the compliance with tender conditions, the quotation price and the quality. The current 

status of the construction of the Western Aqueduct, at the time of writing is listed in Table 1. 

Table 1 - The current progress of the Western Aqueduct project construction. 

Contract 

# 

Description  Status 

1 Inchanga to Alverstone Nek Complete 

2 Alverstone Nek to Ashley Drive Complete 
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The need for a working model of existing, and especially new infrastructure is well-established 

amongst the engineering and allied fraternities. The presence of a model allows for increased 

levels of service delivery and heightened awareness of the system’s behaviour. It also allows 

for improved emergency preparedness and for informed decisions to be made, particularly 

regarding master planning. Such meticulous planning is essential for EWS to establish 

confidence in their ability to uphold high standards of service delivery, to maintain the pristine 

reputation of EWS, as a reliable, award-winning municipal division, and to prevent a 

deterioration in the relationship with the public. The eThekwini Municipalities EWS division, 

through their strategic research relationship with the University of KwaZulu-Natal initiated this 

project. The foundational directive issued, pertained to the focussed analysis of the Ashley 

Drive BPT’s response to failure-states. The outcomes and objectives of this research study were 

thus determined through ensuing sessions in which the expectations and requirements of the 

relevant personnel were discussed and analysed. The scope of this study was thus expanded to 

include the span of the Western Aqueduct, which includes the Wyebank Road BPT. Situational 

analyses were also augmented to the project to include various other possible failure scenarios 

within a series of systematic simulation executions. These results could then be analysed to 

deepen the understanding of the control and operation of the system, and provide valuable 

insight to possible problem situations. 

1.2 Aims 

 Develop a working, realistic, robust model of the Western Aqueduct 

 Assess the performance of the Western Aqueduct under stress conditions 

3 Ashley Drive to Ntuzuma in progress (estimated completion 

2017) 

4 Branch line from Maytime to 

Tshelimnyama 

in progress (estimated completion 

2017) 

5 Branch line from Wyebank to Mount 

Moriah 

On hold 

6 Ashley Drive BPT Complete 

7 Wyebank BPT estimated to start Jan 2016 
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1.3 Objectives 

 Build a mathematical representation of the Western Aqueduct to evaluate the daily 

behaviour of the system 

 Identify and execute stress-tests that can be used as an assurance to the adequacy of the 

design of the Western Aqueduct and to improve the emergency response preparedness 

of the operators 

 Deconstruct the model to allow for users to understand its components  

 Critically assess the accuracy of the simulation in order to identify possible 

improvements  

 Evaluate the results of the simulation 

1.4 Thesis structure 

Figure 3 presents a visual summary of the content of the thesis, and the interaction between the 

chapters. The intent of each chapter is described briefly below. 

Chapter 1: Is an introduction to the Durban Aqueduct projects and the Western Aqueduct. The 

basis of this project, its aims and objectives are also detailed within this chapter. 

Chapter 2: Presents a literature review of the underlying theory and subject matter that relates 

to the project and the physical system. Similar and related projects have been outlined within 

this chapter. 

Chapter 3: Describes the Western Aqueduct from a macroscopic and a microscopic 

perspective. The macroscopic description pertains to the overall route and topography, while 

the microscopic description incorporates the BPTs and their internal components (control 

system, valve arrangements etc.) 

Chapter 4: Describes in detail, the modelling approach that was undertaken to formulate the 

mathematical model of the WA. This chapter essentially is a development/user manual for the 

model. The description will enable the user to seamlessly edit the program to adjust parameters 

according to the latest developments. 

Chapter 5: Presents the results of the scenario tests on the model of the WA. The results are 

analysed to assess the performance of the WA under varying conditions. 

Chapter 6: Presents the conclusions of this study, and the recommendations that have arisen 

from it. 
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Introduction
 Aqueduct Projects
 Aims
 Objectives
 Thesis structure

Literature Review
 Related works
 Water distribution systems
 Structured programming
 Modelling of water distribution 

systems 

The Western Aqueduct
 Macroscopic description
 Microscopic description 
 Break pressure tanks description 

Modelling approach
 Model selection
 Software selection
 Network representation
 Data assimilation & data 

handling
 Model construction
 Analysis and display of results
 Model calibration, verification 

and application

Results and Discussion
 Scenario tests
 Sensitivity tests
 Waterhammer analysis
 Darcy-Weisbach comparison 

Conclusions and Recommendations
 

Figure 3 - Visual summary of the content of the thesis. 
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2 LITERATURE REVIEW 

2.1 Related Works 

Soldi et al. (2015) presented a framework to assess the resilience and vulnerability of a water 

distribution system (WDS). A hydraulic model together with simulations was employed to 

compute the stress of the materials of construction for varying service levels. EPANET was 

used to model the system in order to produce a decision support tool that would aid in 

identifying system vulnerabilities and in isolating pipes with high stress exposure. The 

framework was tested on active water distribution systems. 

Dasic and Djordjevic (2004) developed a method to simultaneously analyse the mechanical 

and hydraulic reliability of a water distribution system (WDS). The presented model, NETREL, 

which is capable of accepting input for systems of varied configurations and sizes, uses a 

genetic algorithm to assess the optimum distribution for maximum reliability. The framework 

was tested on an imaginary network to illustrate its effectiveness in identifying system 

vulnerabilities.  

Hopkins (2012) used a modified version of the gravity model for transportation in order to 

evaluate the systems exposure to threats, without using hydraulic evaluations for each 

conceivable failure state. The modelling of the hypothetical system was conducted in 

MATLAB and WaterCAD. The objective of the program was to identify nodes, junctions or 

pipes that would disable the system if affected or affect the activity of critical service providers. 

Model simplicity was prioritized in order to ensure that non-professionals may utilise and 

understand the model. Model outputs were documented using Microsoft Excel. 
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Zessler et al. (1989) presented a method to institute the optimal operation of WDS using a 

progressive optimality solution algorithm. The model requires the approaching forecasted daily 

water demand, reservoir initial and final conditions, the energy cost schedule and the hydraulic 

parameters for the system. The optimum pump schedule is thus found by iteratively combing 

through the network fragments over a series of time steps until convergence is attained. The 

algorithm was applied to a WDS that consisted of seven booster stations and eight storage 

tanks. 

Biscos et al. (2002) undertook a study for the eThekwini Metro, which used MINLP to 

formulate a method to achieve the real-time optimum operation of a water distribution system. 

Both discrete (valves, pumps etc.) and dynamic (level, concentration) elements were 

considered in the constrained optimization. The primary optimization concerns were the 

maximisation of off-peak electricity usage, and the minimisation of chlorine decay.  A model 

predictive control algorithm was thus formulated to execute an optimization process, at each 

time interval, to generate a series of optimum control moves for a predefined time frame. The 

first control move is then immediately implemented, and the optimization process is re-

initiated. The researchers used MATLAB to generate inputs to GAMS, which was used to solve 

the optimization problem. The Southern Aqueduct was modelled in order to demonstrate the 

ability of the proposed method to optimize the distribution of water within the confines of the 

eThekwini Metro jurisdiction. 

Elker and Kara (2003) undertook to model the Gaziantep City water supply using a nonlinear 

model. Simulation studies were subsequently carried out in order to validate the model results 

and to understand the system behaviour. The stability of the flow, the pressure heads in the 

reservoirs and frictional pressure drops were recorded for sections of the plant. Various flow 

disturbance scenarios were simulated in order to test the system response.  

Kwierniewski (2003) outlined a method to model water distribution systems (WDS) in order 

to assess their reliability. The model was constructed around the WDS operational data. 

Parameters to rate the system reliability were defined in order to calculate the probability of 

unsatisfactory system performance, the frequency of part-fault system states and the intensity 

and duration of such faults. The reliability parameters were defined through the consideration 

of the delivery quantity, quality and pressure. 

Shuang, Zhang & Yuan (2014) undertook a model-oriented approach to the testing of water 

distribution system (WDS) reliability under various operating conditions. Cascading failure 
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conditions in the system were studied in order to identify and subsequently isolate and 

eliminate the pipe sections that are vulnerable to this type of failure. Reliability coefficients for 

the system were defined as the ratio of the sum of available flows to that of required flows. 

EPANET was used as the simulation engine, while MATLAB was used to implement stage-

wise modelling in time steps of one hour. The Hazen-Williams formula was used in EPANET 

for the head loss calculations. 

Wright et al. (2015) presented an optimization procedure for the optimum control of pressure 

reducing valves within water distribution systems, using dynamic topology. A study was 

conducted on an active WDS, to demonstrate the superiority of the proposed method over 

previous approaches. The hydraulic model used within the case study incorporated 2 374 nodes 

and 2 434 pipes. 

2.2 Water Distribution Systems 

History is testament to the fact that the widespread availability of clean water has been 

prioritized since early recorded human civilizations. The first documented transport system 

dates back 3 500 years, to the Crete Island in Greece. Piped water distribution systems existed 

in Anatolia, Turkey, approximately 3 000 years ago. The Roman Aqueducts of the first century 

AD, as perhaps the most famous historical piped distribution systems, spanned a length of 

420 km and conveyed approximately 1 000 𝑀ℓ/𝑑𝑎𝑦 over 90 km to a distribution subnetwork. 

Despite large volumes of water losses, the system enabled each resident of Ancient Greece 

(app. 1.2 million) access to approximately 500 litres per day of clean, piped water (Trifunovic, 

2006). The importance of water distribution systems as assets should not be discounted. Water 

distribution systems are both capital intensive and serve the general public, and thus require a 

distinct form of asset management. The Netherlands as an example, invests approximately 

$500 million per year in order to expand, reconstruct, rehabilitate, manage and maintain their 

water distribution and treatment infrastructure. A cost study conducted on water systems in the 

Netherlands (Figure 4) revealed that the transport and distribution of potable water is the major 

contributor (>50%) to the capital expenditure, while treatment and extraction accounts for a 

smaller proportion. A large proportion of the transport and distribution capital allocation is 

consumed by pipes and pipe fittings e.g. joints, valves and service connections (Trifunovic, 

2006). The typical constituents of a water distribution system are shown in Figure 5. 
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Water transport and distribution systems typically serve the purposes of providing potable 

water for consumption, and for fire protection (Mays and American Water Works Association., 

2010). Water distribution systems however, are also critical in the maintenance of public safety, 

human rights and uninterrupted daily operations (Shuang et al., 2014). This system is a part of 

a broader process that typically consists of the following functions (Trifunovic, 2006): 

1- Raw water extraction and transport – EWS/Umgeni Water  

2- Water treatment and storage – EWS/Umgeni Water 

3- Clean water transport and distribution – EWS 

4- Used water disposal and treatment – EWS/Umgeni Water 

 

Figure 4- Results of a study into the apportioning of funds dedicated to water provision, amongst 

the various contributing expenses in the Netherlands (Trifunovic, 2006). 
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Figure 5 - The typical constituents of a water distribution system (Karamouz et al., 2010). 

The system components that comprise a water distribution system, like the Western Aqueduct, 

are: 

 Trunk main/ Transmission Lines – The function of these pipelines is to convey 

potable water in bulk from treatment plant to distribution infrastructure (service 

reservoirs, pumping stations etc.) or untreated water from the source to the treatment 

works (Ratnayaka et al., 2009). Their size is dependent on the consumer demand in 

regions served by the mains. Trunk main diameters typical range from 100 mm to 

several metres (Trifunovic, 2006). They are generally straight-run systems, but 

branching is sometimes possible. Even the largest of consumers are rarely connected 

directly to the transmission mains (Mays and American Water Works Association., 

2010). 

 Secondary mains are smaller pipelines – These pipelines (typically between 150 mm-

400 mm) link the main apparatus of the distribution systems (e.g. pumping stations). 

They allow for demand-commensurate distribution of water and operation under 

irregular situations (fire, major pipe burst, maintenance etc.). These lines may be tapped 

to directly connect large consumers. 

 Distribution mains – These pipelines function to distribute the flow from within the 

secondary mains to the community. They are usually laid adjacent to roads, have 
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multiple service connections and are frequently tapped to accommodate individual 

users. Valves are carefully placed within the distribution mains in order to maintain 

adequate supply conditions (Mays and American Water Works Association., 2010). 

 Service lines – These are small-diameter pipes that serve as connections for each 

consumer to the distribution mains (Trifunovic, 2006). Private connections link 

individual consumers to the distribution mains, while public outlets are intended to 

serve a sub-section of a community (Mays and American Water Works Association., 

2010). 

2.2.1 Storage in Water Distribution Systems 

Storage systems within distribution systems, like the Western Aqueduct, generally take the 

form of reservoirs (ground-level or buried) or elevation tanks. They are usually situated at 

elevated locations within the distribution system. Their inclusion within the system is primarily 

aimed at serving the following purposes (Mays and American Water Works Association., 

2010) & (Trifunovic, 2006): 

 Accepting variable supply. The modulation of the demand from the source is also of 

concern. 

 Meeting variable demand on the consumer end 

 Maintaining sufficient supply for emergency conditions (fire flows, power outages, 

pump failures etc.) 

 Providing stable, adequate pressure to users 

 Decreasing pumping costs and flattening pumping variations 

 Providing surge relief (see Section 2.2.1.1) 

 Blending of water from different sources 

The primary purpose of the water storage features is to equalize the supply and demand 

conditions, thus allowing for the use of smaller pipes. This is due to the buffering function 

offered by the tanks. The average consumer demand can thus be considered as the design flow, 

instead of overdesigning to meet the maximum possible demand. Storage systems are thus a 

justified cost, as other large costs are offset due to it (Trifunovic, 2006). Reservoirs are typically 

designed to store 20-50% of total maximum daily consumption, in order to maintain a high 

turnover ratio, which in turn aids in circumventing chlorine degradation and water quality 

issues. Maintaining a high turnover ratio and good mixing characteristics also mitigates 
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problems of ‘deadzones’ within the reservoirs, where water stagnates and thus deteriorates 

within the reservoir (Mays and American Water Works Association., 2010). 

2.2.1.1 Break Pressure Tanks (BPTs) 

Supply point

Break Pressure Tank (BPT)

Control philosophy

+200 m

0 m

1400 mm 

diameter

Level?

Consumer 

demands

Reservoir 
draws

Reservoir 
draws

 

Figure 6 - Simple schematic describing the purpose of a break pressure tank in a gravity-

fed water distribution system. 

Break pressure tanks, as found within the Western Aqueduct, are primarily used as pressure 

regulating devices that are ideally paired with balancing tanks. The purpose of a break pressure 

tank is to return the process fluid to atmospheric pressure, in order to maintain working 

pressures in the system within economic ranges. In Figure 6, the break pressure tank is tasked 

with releasing 200 m of head by re-establishing atmospheric pressure, The inlet control system 

is governed by a control philosophy that must maintain the tank level based upon the variable 

upstream head, while giving cognisance to downstream demand.  It is important to design 

compartments within the break pressure tank in order to permit easy access for maintenance 

(Stephenson, 2012). Bypasses around the break pressure tanks should be avoided at all costs, 

in order to negate the possibility of the high pressure being transmitted to the pipelines 

downstream of the break pressure tank. The design and location of break pressure tanks should 

aim to bisect the sum total maximum static head on either side of the break pressure tank 

(Ratnayaka et al., 2009), or to divide the system into a series of manageable pressure zones 
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(Groundfos., 2012). BPTs are an invaluable tool in the establishment of pressure zones, which 

provide advantages by reducing excessive pressure in lower-lying areas (Trifunovic, 2006).  

Break pressure tanks also find use as buffering tanks, to ensure that adequate supply is 

maintained even during peak demands or equipment failures. BPTs also serve to minimize the 

effect of water hammer surges and to prevent instances of water contamination by eliminating 

the possibility of backflow (Groundfos., 2012).  

The inclusion of break pressure tanks into gravity fed water distributions is integrated within 

the considerations for the materials of construction and maximum working pressure (Niskanen, 

2003). This is due to the radical reduction in working pressure that stands to be realized with 

the use of BPTs, and the subsequent reduction in the requisite strength of materials, and 

expected wear on system components. As a heuristic, working pressures should be kept below 

20 bar (Stephenson, 2012).  

Although BPTs are advantageous in many regards, they do increase the initial capital cost of 

the system, pose a health risk due to increased microbial growth within the tanks (if the design 

and turnover ratio is inadequate), and occupy large expanses of land. Some of the advantages 

associated with the use of BPTs include (Groundfos., 2012): 

 Increased robustness due to the storage of large volumes of water 

 Increased control of pressure within the pipelines 

 Decreased sensitivity to electrical outages 

 Decreased capital costs due to the adequacy of lower grade pipeline and fittings 

materials 

 

2.2.2 Valves 

Flow control valves are selected based on their characteristics, which corresponds to the 

relationship between the flow, pressure drop and % of the trim open. It should be noted that 

intrinsic characteristics, caused by varying designs of the valve trim, seat, body shape and port 

dimensions, often differ from the actual operating characteristics of the valve due to the 

interaction of valve with the characteristics of other system components (Ratnayaka et al., 

2009). Typical intrinsic characteristics of different valve designs are shown in Figure 7. The 
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head loss through a valve can typically be described by Equation [1], which incorporates the 

intrinsic valve characteristic ( ( )f x ), and the valve capacity coefficient ( vC ): 

( )vQ C f x p    [1]

 

 

Some operational difficulties with control valves occur as a result of the throttling function of 

the valve. The valve accelerates the passing fluid at a rapid rate, and the resultant high velocities 

cause steep transverse velocity gradients to form, due to frictional effects (no slip) at the 

exposed surfaces. The result is large-scale energy dissipation by the conversion of mechanical 

energy to thermal energy (heat). The desired pressure drop through the valve is thus achieved 

in conjunction with varying amounts of other less desirable effects such as noise, cavitation 

and valve chamber wear (Mays, 2000). 

The parallel arrangement of valves is advantageous in areas of high pressure variations, and 

when a single valve (equally sized valve) is unable to accommodate large requisite flows. 

Apollo Valves. (2014) thus recommends that several smaller pressure reducing valves be 

installed in parallel when designs are intended to serve future demands. Valve performance is 

also enhanced when the flow demand range is high (more accurate control due to the divided 

flow), and maintenance can be easily conducted on individual valves without a total system 

shutdown (Watts Canada., 2015).  

Figure 7 -Representative intrinsic valve characteristics for numerous valve types (American 

Water Works Association., 2001). 
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2.2.2.1 Globe Valves 

Globe valves, as included within the Western Aqueduct inlet-control design, are linear valves 

that are also commonly called y-pattern valves (American Water Works Association., 2001). 

Their design, as shown in Figure 8a, closely resembles that of an angle valve, apart from the 

90° angular distance between the inlet and outlet chambers in the latter (Mays, 2000). The 

throttling function of the globe valves, that serves to regulate flow, is achieved through the 

lowering of a plug/disc into the valve seat. The valve seat is formed from an internal baffle that 

laterally compartmentalises the valve body. The design of the plug determines the characteristic 

of the valve. The most common categories of globe valves are linear, equal percentage and fast 

opening. The design of the globe valve provides for a convoluted flow path. Globe valves 

primarily find use within pressure-control scenarios, tank level control and surge control 

(American Water Works Association., 2001). The advantages of globe valves include a good 

sealing capacity (preventing of leakage and thus contamination) and a heightened resistance to 

wear. Globe valves however offer a high resistance to flow, even in their open positions, and 

are vulnerable to the deposits of sediment and other particles within their chambers. Figure 8a 

is a diagram of the operation of a typical globe valve (American Water Works Association., 

2001). 

Self-actuated valves, also known as hydraulically operated valves, utilize the process fluid 

pressure in order to adjust their position. This renders them free of any dependence on 

electricity, and an attractive option in the case of power outages. Self-actuated control valves 

can either be backpressure control, where an upstream pressure is used to adjust the valve 

position, or pressure control, where a downstream pressure is used to throttle the control valve, 

and is thus controlled. The latter makes use of a tapping that connects the bonnet diaphragm to 

a downstream location, giving the bonnet access to the pressure at such a location. An increase 

in the downstream pressure beyond a setpoint thus forces fluid into the bonnet, which applies 

an increased force onto the diaphragm, thus closing the valve. The valve closure causes the 

downstream pressure to retreat to the setpoint. If the downstream pressure falls to below the 

setpoint level, the process fluid is drawn back into the downstream pipe from the bonnet, thus 

decreasing the force applied to the valve diaphragm, which opens the valve. Fluid flow is thus 

increased due to a reduction in the system resistance, and the downstream pressure is thus 

increased. The back-pressure control valve uses an analogous operational philosophy, except 
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that an increase in pressure on the diaphragm forces open the valve. The structure of a self-

actuated globe valve is shown in Figure 8b (Enggcylcopedia., 2012).  

 

2.2.2.2 Sleeve Valve (Fixed Cone Valves) 

The design of sleeve valves render them particularly well-suited to high-pressure, high-volume, 

energy intensive applications. The valve operation is able to achieve massive energy dissipation 

and is vibration-free and resistant to cavitation (Ithuba Valves.). The valve consists of an 

external tubular sleeve which moves across the inner sleeve’s discharge port, thereby altering 

the valve resistance to flow (Figure 9a). An alternate, more common design (Figure 9b) consists 

of an external sleeve which is made to move relative to the porous inner sleeve. This movement 

regulates the volumetric liquid flowrate through the valve, by varying the exposure of the inner 

sleeve to the incoming liquid, and thereby adjusting the resistance of the valve (American 

Water Works Association., 2001).  

The inner sleeve has meticulously designed nozzles (ports), that may be tapered, that ultimately 

determine the incremental change of volumetric flow through the valve per incremental change 

in the valve position. This, together with the number of nozzles determines the valve 

characteristics, which is designed according to the pressure and flow conditions that the valve 

a b 

Figure 8 – (a) Schematic of a globe valve operation (left) and (b) the operation of a 

hydraulically operated pressure-regulating globe valve (right) (American Water Works 

Association., 2001) & (Enggcylcopedia., 2012). 
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is intended to regulate. Valve maintenance is prevented by design, as the nozzles balance flow 

and direct the liquid jets to collide, thereby protecting the valve inner surfaces and minimizing 

operational costs (Henry Pratt Company., 2008).  

Sleeve valves are most commonly used at the outlets to dams, in water distribution networks 

and in turbine systems. They are generally installed to discharge to atmosphere, but are capable 

of discharging to a immersed outlet in order to prevent erosion of equipment due to jetting 

(Henry Pratt Company., 2008). The valve may be manufactured from cast iron, graphite, steel 

or stainless steel. In-line maintenance and replacement of valve seals can be easily undertaken 

with the use of upstream isolation valves (Ithuba Valves.).  

 

 

2.2.2.3 Gate Valves 

Gate valves, as included within the sleeve valve isolation chambers in the Western Aqueduct 

design, consist of a circular/rectangular gate that is lowered into the valve bore in order to 

control the rate of flow through the valve. Gate valves are advantageous when low frictional 

drops are preferred, and it renders gate valves ideal to on/off toggle applications and isolation 

responsibilities (Cameron., 2015). Gate valves cannot be used for flow control or regulation, 

a b 

Figure 9 – (a) Sleeve valve at the Ashley Drive break pressure tank site - prior to installation 

- (left). (b) Cross section of a sleeve valve (alternative design) demonstrating its operation 

(right) (Bailey Valves., 2013).  
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as their characteristics are unsuitable, and vibrational problems plague their stems. Gate valves 

have developed significantly over the past century to mitigate operational problems that 

plagued them. Gate valves must be frequently operated in order to prevent the build-up of dirt 

and grit within the machined grooves, and to keep the threads in the nuts and stem clear 

(Ratnayaka et al., 2009). The schematic of a gate valve is presented in Figure 10. 

 

Figure 10 - Gate valve internals - DN300 bore (Ratnayaka et al., 2009). 

2.2.2.4 Butterfly valves 

Butterfly valves are relatively simple valves, both in terms of their minimalistic design, and 

construction. They are commonly used within water distribution systems, including the 

Western Aqueduct, as isolation valves. They consist of a centrally pivoted disc that is able to 

rotate against oncoming flow, thus enabling operation even in unbalanced pressures. Butterfly 

valves are ideally suited to isolation applications but find limited use within flow control and 

regulation due to potential damage to the seals. Butterfly valves can be fabricated to large 

diameters (>10 m), and have operated successfully under conditions of high oncoming velocity 

and upstream heads (Mays, 2000). 
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2.3 Structured Programming  

Structured programming, also commonly termed modular programming, is a programming 

technique that is commonly used to construct mathematical models of water distribution 

systems. This programming formulation is a subsection of procedural programming that allows 

for the development of a faster, less complex and a more efficient program that is easier to 

understand and adapt. It strictly discourages the use of the “goto” statement and encourages 

the use of a top-down analysis format. The programme structure is mapped into a series of 

distinct operations/functions that contribute to the overall programme operation through 

function calls within the main script. This modular format allows for the re-use of the modular 

subroutines and a more discernible and memory efficient code (Rouse, 2014). Modules are 

themselves organized in a structured code, and are rigorously tested prior to integration within 

the main structure. Structured programs are easily graphically represented through the use of 

flow diagrams (California Polytechnic State University, 2008). 

The use of loops (“for”, “while” etc.), conditional statements and logic blocks are encouraged, 

resulting in greater productivity through the following (California Polytechnic State 

University, 2008): 

1- Less time-intensive coding, debugging and testing 

2- More reliability due to fewer logical and organizational errors 

3- Easier maintenance and editing of the program for further use 

Object oriented programming (OOP) is an advanced, altered form of structured programming 

that makes extensive use of self-contained, interacting sub-programs within the main program. 

It is characterized by classes that represent distinct functions of the overall program. Structured 

programming is better suited to small-medium sized programs, while OOP is only encouraged 

for mega-scale programming initiatives, due to the time-intensive nature of developing of 

function classes (Neely and Obbayi, 2010). 

2.4 Modelling of Water Distribution Systems (WDS) 

The use of computer aided modelling of water distribution systems in contemporary times, has 

found use primarily in the design of these systems, and is being used increasingly to assess the 

effects of the design on the water quality. Hydraulic models are also often used as an 

inexpensive alternative to the building and testing of a prototype prior to accepting a design. 

For these applications, numerical models are advantageous in terms of modern technology’s 
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ability to rapidly generate results, the ease with which the model may be amended and adjusted, 

and the fact that the usage of the model poses no financial or physical risks that a physical 

prototype does (Mays, 2000). 

With the progress of technology, the classical trial-and-error method has given way to more 

complex methods of design that exploit the ability of modern computers to process large 

amounts of information in short periods of time. Models find use in the testing, operation and 

optimization of water distribution networks, and aid in the strategic management, long-range 

planning and decision-making processes of these system (Brebbia and Kungolos, 2007). Water 

quality management and contaminant testing has also emerged as a major use of network 

modelling. Models can also be used for transient analyses or network troubleshooting and for 

the purposes of rehabilitation (Walski and Haestad Methods, 2003). Hydraulic models are 

highly beneficial for utility controllers, but require periodic updates in order to remain relevant 

to the ever-evolving conditions of distribution systems. The following are some of the more 

notable applications of computer aided modelling of WDS.  (Mays, 2000):  

- For network improvements and network expansions in the planning and design stages.  

- Planning of forecasted maintenance operations that may remove system components 

from their functions e.g. valve or reservoir maintenance. 

- In determining the optimum placement of specific components, either through manual 

iterative or optimisation strategies. 

- To develop operator skills, formulate SOPs (standard operating procedures), to arrange 

pump schedules for energy optimisation and to analyse water quality. 

- In the analysis of the system’s adequacy in accommodating fire flows with regards to 

the available flow and pressure. Insurance companies generally make extensive use of 

these in order to assess the risk status of their clients. 

- For reliability and vulnerability analyses, to test the exposure of the system to risk 

scenarios under extenuating circumstances that cannot always be reasonably considered 

in the purview of the designers during the design phases. Such circumstances include 

pathogenic/toxic contamination of the water, at source or within the network, power 

outages, burst-pipes, water shortages etc. Furthermore, network security has recently 

come under increasing scrutiny to ensure that failures (natural and deliberate attacks) 

are eliminated or in the very least anticipated and mitigated correctly. Numerous studies 

have focussed on the analyses of systems with cognisance on this aspect. (Albert et al., 
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2000), for example, have reported that scale-free networks are robust in dealing with 

random variations, but are fragile under deliberate attack. This implies that under 

circumstances of natural or deliberate disasters, the system may experience cascading 

failures that propagate from the affected node through the system.  

Perhaps the most important benefit of a model, lies in its assistance in forecasting of the results 

of predetermined actions and conditions that may be physically impossible to implement, 

thereby increasing the understanding of the system and its behaviour in response to possible 

changes in its operation. Other important advantages of numerically modelling within a 

computer program are (Mays, 2000): 

- Having a structured format that allows for flexibility in terms of input parameters 

- The model results can be displayed in an unambiguous manner through the use of 

colour-coded plots, tables, histograms etc. 

- Spreadsheets can be used to store data in a neat manner.  

- Model adaptations allow for other analyses to be carried out e.g. water quality analysis, 

pump schedule (energy efficiency) etc. 

Model complexity is primarily based on the layout of the network, the level of detail required, 

the acceptable error that can be tolerated for the ultimate application of the model and the 

availability of required information. The trade-off between available information and 

technological sophistication vs modelling and execution time is thus a limiting factor in the 

plausible depth of the model (Trifunovic, 2006).  

2.4.1.1 Types of Hydraulic Models 

Hydraulic model simulations are of two types (American Water Works Association., 2005) and 

(Walski and Haestad Methods, 2003): 

1. Steady State Simulations – These represent the system’s equilibrium state at an instant 

of time, for the given inputs. These generally find use in design and sizing problems, 

and are typically run for ‘worst-case’ scenarios e.g. power outages, fire flow usage etc. 

2. Extended Period Simulations (EPS) – involve the assessment of the system response 

over a longer period of time. It is commonly a string of steady state simulations that are 

evaluated for a given period of time at specified intervals. EPSs thus enable the study 

of the effects of the varying user demands and reservoir levels on the system, as well 

as a more realistic study of the system response to a change in input conditions, thus 
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providing valuable information that can be used in order to adjust parameters that define 

control systems. In order to formulate an EPS, the accumulation within each storage 

tank must be accounted for, by solving the differential equation that describes the state 

of the tank i.e. 

res
in out

dV
Q Q

dt
 

  [2] 

The most basic solution method, the explicit Euler Method, is a first order finite-

difference method whose global error is proportional to the size of the forward step 

(Mays, 2000).  The discretized form of Equation NNN, which results from the 

application of the Euler Method, is presented as  

( ) ( ) ( ( ) (t))res res in outV t t V t t Q t Q        [3] 

Mays (2000) suggests that the Euler method typically produces acceptable results, even 

with hour-long timesteps, provided rapid flow changes are not experienced. Mays 

(2000) also endorses EPS using this solution method as sufficiently accurate for 

practical usage for the aforementioned implementations. 

In addition to these, the model can be classified according to the underlying mathematical 

formulae that are used to construct the numerical representation of the system. The following 

are the main types of mathematical models (Mays 2000) 

1. Mass Balance Model: This simple model focusses on the conservation of mass in a 

system. For a single tank, the model would simplify to equating the difference of the 

flow into and out of the tank to the time rate of change of volume through the tank. 

Pressure requirements are neglected, and thus cannot be analysed through this model. 

The model uses a sweeping assumption that the liquid head will suffice, or adequate 

pumping facilities are available, as long as flows are within an acceptable range. 

Multidimensional mass balance models can also be executed by employing weighted 

equations for system parameters.  

These models are well-suited to applications that require large amounts of simulation 

results, or for major transmission pipelines only. The model’s usefulness however, 

severely impacted for use in pumping-cost and pressure analyses.  

2. Regression Models: This type of model allows for the accurate incorporation of the 

system’s non-linear hydraulics by employing non-linear regression relations. The 



 

26 

 

regression can be executed by a regression scheme to a set of results from repeated 

simulations of a well-calibrated model under different loading and flow conditions, or 

from measurements of a physical system at several locations. The use of this class of 

models becomes limited in the event of system infrastructural changes, because of the 

highly-specific nature of the models. The outcome is that in this case, or in the case of 

system loads outside of the simulated range, highly erroneous results are produced. 

Errors may also be compounded by generating regression curves that are an inaccurate 

representation of the system. 

3. Simplified Hydraulic Models: These models represent a transition from the simple 

regression models to a full-scale nonlinear network model. In this model, network 

hydraulic behaviour is typically represented by a network-wide model or by a system 

of linearized hydraulic equations. The model is generally skeletonized in scrupulous 

manner to drastically reduce the model complexity.  

4. Complete Hydraulic Model (non-linear): These models allow for the hydraulic 

behaviour of a network to be calculated by rigorously solving the highly non-linear, 

coupled hydraulic equations that describe the system. This model is highly adaptive to 

infrastructure and demand allocation changes, and is able to model looped and branched 

configurations satisfactorily. These models require large amounts of data in order to 

compile, and are difficult to accurately calibrate. Furthermore, these models are time-

consuming to build and are computationally resource-intensive to solve. 

2.4.1.2 Model Implementation 

Although many model implementation procedures have been formulated, the complete 

development of a hydraulic model can be grouped into three broad, interconnected categories, 

each of which has multiple phases; 

 Model Development 

 Model Calibration 

 Simulation, Analysis and Optimization 

2.4.1.3 Model development  

Model development is initiated by the mandate to undertake the stated task. As such, the 

purpose of the model must be clearly specified in order to define the scope and boundaries of 
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the hydraulic model. This will allow for the prevention of unnecessary resource and time 

expenditure. 

2.4.1.3.a Data Assimilation and Data Handling 

The information necessary to compile the model can then be identified, and can be obtained 

from a variety of sources. System maps, contoured topographical maps and/or GIS/SCADA 

systems outputs can be used to collect information on the topography of the system, location 

of pertinent equipment, lengths of pipes and other background information. Sizes of equipment 

can generally be obtained from the designer in the form of technical drawings, or from asset 

management software. As-built drawings should be used in the case of any alterations made 

during the construction phase of the equipment. Physical inspections/measurements may be 

necessary if critical information cannot be obtained or estimated with reasonable accuracy 

(Walski and Haestad Methods, 2003). Data for consumer demands (diurnal patterns), growth 

factors and peak factors can be obtained from the billing division of the water authority. Other 

requisite information includes the initial conditions of all system components e.g. pumps, 

control valves, reservoirs etc. In addition, schedules for pump and valve controls, or the control 

settings that govern the operation of these elements should be obtained from the relevant 

personnel. 

It remains important to evaluate and record the quality and applicability of the data to the 

system in order to identify any errors and to assist in future enhancements of the model. This 

also aids in the assessment of the level of confidence in the model, and its use in planning and 

troubleshooting, and determines the appropriate amount of resources to be expended in 

securing the information. Information should also be ranked according to the estimated impact 

on the model results, so that commensurate attention can be afforded to the verification of the 

accuracy of such critical information. 

 Water Demand Forecasting 

The total water demand and its spatial distribution have a major impact on the system 

performance (Mays, 2000). Accurate forecasting of water demands is thus of critical 

importance in the evaluation of the hydraulic performance and reliability of the system. This 

information is also critical in the design of reservoir, pumping stations and distribution 

networks. Water usage profiles are typically presented as diurnal demand profiles 

(hydrographs) that indicate the rate of withdrawal from a reservoir over the period of one day 
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(Trifunovic, 2006). The information necessary to estimate system regional demands can be 

sourced from four possible data sources. These are (in order of decreasing accuracy); billing 

information from each meter, meter routes, dwellings classification and amounts and land-use 

classification (Mays, 2000). Although numerous intertwined factors affect the estimation of 

usage profiles of supply areas from dwellings and land-use classifications, the following factors 

are sufficient in in defining/developing accurate diurnal usage profiles (Trifunovic, 2006) and 

(Mays, 2000). 

i. Area classification – The dominant classification of the supply region with regards to 

purpose of the water supplied. These classifications generally include urban (domestic), 

industrial, rural, tourism etc. The classification is often complicated by the lack of 

demarcation of areas, although a dominant pattern is typically apparent. 

ii. User demographics - Similar areas may exhibit different usage patterns due to 

demographical differences that exist amongst consumers. Major demographical and 

similar influences include culture, education, technological incorporation and climate. 

iii. Water value – Conditions of supply and cost impact on the water usage patterns. 

Expensive water, unreliable supply, inadequate supply and no access to municipal water 

all significantly affect usage profiles. 

Furthermore, seasonal variations exist, which must be accounted for. In the vast majority of 

developing countries, including South Africa and neighbouring SADC countries, non-domestic 

(agricultural and industrial) use far surpasses domestic usage. Additionally, factors such as high 

leakage levels may influence the diurnal patterns. Apart from seasonal variations, usage 

profiles are also observed to vary between weekdays, weekends and public holidays 

(Trifunovic, 2006).  

Stephenson (2012) undertook a study to develop diurnal demand curves for residential (high 

and low income – middle income was found to be almost identical to low income) and industrial 

areas in South Africa.  

 Skeletonization 

It is often inconceivable to include every pipe of a physical water distribution system into the 

model. Furthermore, data handling for such an exhaustive model is a tedious task and model 

outputs are complex, since the complexity of the model and its outputs are proportional to the 

size of the modelled system. It thus becomes necessary to use sound engineering judgement in 
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order to only select pipelines that are critical to the network portion being modelled, without 

significantly impacting on the accuracy of the model (Trifunovic, 2006). This process, which 

is usually initiated by selecting a threshold pipeline diameter for the model, is termed 

skeletonization or schematisation. All pipe runs that exceed the threshold value, as well as 

critical pipelines that are judged to substantially affect the flow within the above-threshold 

pipes (e.g. large user connections, high velocity flows, parallel connections etc.) are then 

included into the model. For design purposes, models exceeding 1000 pipes are rarely relevant 

in its entirety. Similar deductions can be made for models that incorporate pipes of diameters 

below 100mm. In addition to the selection of pipes exceeding the threshold diameter, the 

following rules  to the skeletonization process (Trifunovic, 2006): 

 Proximate demand nodes can be lumped into a single demand. 

 Branched pipes can be represented by their straight-run equivalents, and dead ends can 

be neglected. 

 Equivalent diameters are used. 

 All demands, even for excluded portions of the network, must be accounted for.  

 The impact of all storage tanks, valves and pumps must be accounted for.   

 The fundamental structure of the system should remain unaltered, and no major loops 

should be dismantled. 

The major benefits of skeletonization include the lightening of the computational burden 

necessary to solve the model and attainment model simplicity. The result is a model that is 

easier to understand, debug, verify and calibrate. The two extreme levels of skeletonization 

modelling result in the transmission-mains model and the all-mains model. The former only 

includes main pipelines through the system, large users, pumps, reservoirs and storage tanks, 

and control valves. The latter aims to include practically all system connections barring those 

to individual users. Although many computer programs may be capable of executing all-mains 

models, the marginal increase in accuracy provided by it is seldom deemed beneficial when 

contrasted to a well-skeletonized system. The large demand for network information that is 

present in all-mains models usually calls for extrapolative action to satisfy, and could thus 

render the large model less accurate than a skeletonised representation of it. The skeletonization 

process is illustrated in Figure 11 (Trifunovic, 2006).  
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This information can then be used together with the relevant hydraulic equations and a software 

package to build the program into a working mathematical model that can correctly represent 

the mandated physical system. Pertinent hydraulic theory is presented in Section 2.4.2. 

 

 

 Software Selection 

Numerous software packages exist for the purpose of hydraulic modelling and simulation. 

EPANET is one such widely-used software package that is capable of performing extended 

period simulations. It was first released in 1993 by the United States Environmental Protection 

Agency as a public domain software that can be freely distributed and copied. Its capabilities 

include the modelling of highly complex networks, tanks of any shape, control valves, and pipe 

fittings. It can also complete hydraulic calculations using numerous calculation methods; 

calculate energy expenditures and accommodate time-varying demand patters. EPANET also 

is able to track multiple variables, including; nodal pressures, level, flowrate, network-wide 

Figure 11 - Illustration of the skeletonization process for a hydraulic model of a system 

in Hodeidah. The graphics illustrate the skeletonization process outcomes for the removal 

of pipes below 100 mm, 200 mm, 300 mm in diameter, and the final representation 

(Trifunovic, 2006). 
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chemical composition and water age. Energy optimization, fire flow evaluations and water age 

minimization are amongst the numerous uses of the program. EPANET can be interfaced in a 

variety of programming languages including C++, Pascal and Delphi (US Environmental 

Protection Agency., 2015). EPANET can be used in conjunction with MATLAB through the 

EPANET toolkit within the MATLAB package (EPANET .DE., 2011). WaterGEMS, 

HAMMER, KYPipe (Pipe2014) and Bentley AutoPIPE are other commercial software suites 

that have similar, and perhaps more advanced capabilities than EPANET (Cook, 2012). 

 Model calibration 

The model must be calibrated in order to verify the accuracy of the predicted (theoretical) 

representation to the empirical results of the actual operation of the system. A calibrated model 

can provide invaluable inputs into the engineering and strategic decision making processes, 

and can safeguard from potentially disastrous errors that may arise from improper model 

results. 

Model calibration involves the tweaking of model parameters (pipe roughness, usage profiles 

etc.) in order to ensure that results from the model, for a specified input, agree with those of 

the physical system under the same conditions, within an acceptable error range. This 

correspondence should be achieved in each of the following; reservoir levels, individual pipe 

flowrates and nodal pressures. The effect of scaling and tuberculation (a constant decrease in 

pipe diameter), can also be incorporated into the friction factor estimate through calibration. 

The field data collection is achieved through the extensive collation of field data preferably at 

the extremities of the system. Flow results are generally more sensitive to input adjustments, 

and should thus be preferentially reconciled (Mays, 2000). The calibration process may 

uncover errors or inaccuracies within the model, but may also indicate the neglect of system 

parameters, controls or constraints. System parameters, assumptions and extrapolations in the 

model, may need to be adjusted, although caution should be exercised, as measured data itself 

could be inaccurate and even wrong. Data adjustments should therefore be made only after 

careful analysis and only with sufficient justification. Repetition of this process may become 

necessary upon updating of the model or alterations to the physical system (American Water 

Works Association., 2005). 

The degree of calibration is ultimately governed by the intended purpose of the model. The 

calibration process should thus aim to only reconcile the required results of the model to 
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measured data, in order to streamline the model development process (Walski and Haestad 

Methods, 2003).  

 Simulation, analysis and optimization phases 

The Simulation, Analysis and Optimization phase is marked by the evaluation of the system’s 

state either at an instant in time (steady state), or for a specified duration (EPS – typically 

24 hours). The distribution system is generally tested at limiting scenarios in order to assess 

the performance of the system under stress. The results are then processed into tabular or 

graphic formats for further decision-making. A visual summary of the model development and 

implementation process is presented in Section 4. The results of the simulations have 

innumerable uses, some of which are listed below (The New Zealand Water & Wastes 

Association Wairos Actearoa., 2009) and (American Water Works Association., 2005): 
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Figure 12 - Representation of the model development and implementation process. 
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2.4.2 System Hydraulic Representation 

The hydraulic laws and equations that govern the flow of water form the basis of water 

distribution system design and operation. It is thus imperative that these very hydraulics be 

used to characterize the system model, so as to minimize the absolute error between the model 

and the physical system. Pressurized flow, which is governed by its own set of hydraulics, 

occurs in pipelines in which a pressure considerably higher than atmospheric pressure is 

maintained (Mays, 2000). 

The system hydraulics govern two primary aspects of a systems characteristics; its hydraulic 

capacity – capability to convey design flows, and the manner in which the instituting of design 

flows and rectification of deviations are controlled. It should however be noted that the 

successful implementation of a pipeline system is contingent upon the collaboration of parties 

responsible for the hydraulic design, structural aspects, construction, mechanical and 

geotechnical surveyors. Additionally, social acceptance, environmental impact and legal 

aspects must be navigated in order to successfully implement a water distribution system design 

(Trifunovic, 2006). 

Equation [4] is simply a restatement of the law of mass conservation, in volumetric terms. The 

application of this relation requires the definition of a ‘control volume’- a fixed region that is 

within an area referred to as the ‘control space’. The continuity equation simply expresses the 

relation between the accumulation of fluid in the control volume (
dV

dt
) to the volumetric flows 

into ( inQ ) and out of ( outQ ) it. For an incompressible fluid in an isothermal system, the 

continuity equation is expressed as (Mays, 2000): 

 in out

dV
Q Q

dt
   [4] 

The concept of steady flow simply implies that there is no accumulation within the defined 

control volume (Equation [5]), and thus the rate of flow into the control volume is equal to that 

out of the system. This equation is analogous to Kirchoff’s Law for electrical current, when a 

node has no capacity to accumulate fluid (zero volume - i.e. pipe junction) (Mays, 2000). 

  in outQ Q  [5] 
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 Newton’s second law (Equation [6]) allows for the calculation of the forces exerted on the 

system components ( extF ) through the time rate of change of velocity (
dv

dt
) and the mass of 

the fluid ( m ). The principal forces that are exerted in a pressurized piping system are the fluid 

weight, friction and hydrostatic pressure (Mays, 2000). 

  ext

dv
F m ma

dt
   [6] 

The flow of a fluid through a conduit causes the distribution of the total energy within the fluid, 

between the various forms of mechanical energy, to change. The Bernoulli equation 

(Equation [7]) accounts for the changes that occur during the movement of a fluid under 

pressure, to a different elevation at a varying velocity. The Bernoulli equation however neglects 

frictional energy dissipation, which is accompanied by an energy loss, usually through 

incremental temperature changes within the fluid. Bernoulli’s equation is expressed as 

  

2 2

1 1 2 2
1 2

2 2

p u p u
z z

g g g g 
       [7] 

The first term ( 1p

g
) is the pressure head that corresponds to the flow work, and is related to 

the pressures at the start ( 1p ) and end points ( 2p ) and the fluid density (  ). The potential 

energy due to gravity ( z ) and the kinetic energy (

2

1

2

u

g
) are also considered at the start and end 

points to complete the energy balance. Either side of the equality represents the total head at 

the specified point, while the sum of the potential energy and kinetic energy terms represent 

the piezometric head which forms the hydraulic grade line (HGL). The Bernoulli equation 

however, must be amended to include the head loss term ( fh ) to account for frictional energy 

dissipation (Trifunovic, 2006). 
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       [8] 

The head loss, in laminar flow (𝑅𝑒 < 2 000 for cylindrical piped flow), is postulated to be 

caused by events that are elucidated with the use of the boundary layer theory. This theory 

underscores the ‘no-slip’ condition, which states that when a fluid passes over a surface, the 
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fluid layer that is in direct contact with the surface attains the velocity of the surface. Successive 

layers (further from the surface) then assume a greater velocity in the direction of the bulk 

movement of the fluid. The impeding force (shear stress) on a fluid layer is due to the viscosity 

of the fluid that allows for the slower-moving neighbouring layer, that is closer to the surface, 

to decelerate the subsequent layer. The result is that for cylindrical piped flows, the greatest 

velocity is attained at the centreline, where the shear stress is zero. Velocity and shear stress 

gradients are thus observed in opposing directions within the pipeline. The head loss for 

turbulent flow however, cannot be elucidated using this theory, as turbulence causes 

unsystematic, irregular flow patterns that are not definable in simplistic terms. Turbulent flow 

(Re>4 000 for cylindrical piped flow) is characterized by the formation of eddy currents due to 

the fluid contact with the rough (conduit) surface (Trifunovic, 2006). The formation of eddy 

currents is commensurate with the bulk mean velocity of the fluid. The eddy currents promote 

a phenomenon termed ‘turbulent mixing’, where adjacent fluid pockets dissipate matter and 

energy to each other due to the eddy currents. The Reynolds number is the primary measure of 

the turbulence of the fluid, and is defined for cylindrical piped flow in terms of the pipe 

diameter ( d ), the fluid bulk velocity ( u ) and the fluid density and viscosity (  ) as 

Equation [9] (Mays, 2000). 

  Re
du


   [9] 

The zone between laminar and turbulent flow is named transitional flow, wherein the effect of 

the Reynolds number on the head loss is restricted.  

The majority of engineering applications usually operate within the turbulent flow regime 

despite the inability to categorically analyse the complex interactions and ostensibly 

unstructured flow patterns within the fluid. Empirical formulations are thus accepted as 

sufficiently accurate, in order to avoid resource-intensive solutions to a multiplicity of 

intertwined complex equations that result from detailed studies of the velocity variations within 

turbulent regimes.  

There are two widely accepted relations that are able to relate the discharge rate ( Q ) to the 

head loss ( fh ) that is encountered due to frictional forces along the pipe wall. Both equations 

are accommodated for within the EPANET software package ((US Environmental Protection 

Agency., 2015)). 
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The Darcy-Weisbach (1845) Equation (Mays, 2000): This empirical equation is useful 

in determining the frictional head loss that is associated with a specified flowrate in a 

pipe. It entails the use of a dimensional friction factor (  ) that accounts for the 

roughness of the pipe inner surface. The Darcy-Weisbach equation prescribes a 

relationship of direct proportionality of the frictional pressure drop ( p ) to the pipeline 

length ( l ) is described as 

2

2h

l u
p

d

 
     [10] 

The hydraulic diameter for a duct, which reduces to the actual diameter for a circular duct, 

is defined in terms of the cross-sectional area ( xA ) and wetted perimeter of the conduit         

( wettedp ), as 

4 x
h

wetted

A
d

p
   [11] 

The Darcy-Weisbach equation demonstrates that the pressure loss is directly proportional 

to the length of the conduit, friction factor, density and the square of the velocity, yet 

inversely proportional to the diameter of the conduit. An increase in length or roughness of 

the inner surface of the pipe ensures that the fluid experiences more surface friction, while 

for an increase in pipe diameter, the shear force from the walls is somewhat diminished. 

The equation also has a highly nonlinear relation with the discharge rate and conduit 

diameter, resulting in large head losses for exceedingly small pipes (Trifunovic, 2006).  

The Colebrook-White (1937) equation (Equation [12]) can be used to determine the friction 

factor for flows within the turbulent regime, provided the roughness (ɛ) of the conduit inner 

surface is known. The relative roughness can be obtained from pipe manufacturers, who 

determine the parameter through rigorous experimentation. This equation is highly 

nonlinear and implicit, and is therefore useful for modelling and design purposes only when 

computational exertion is not a limiting factor. The Moody (1944)  Diagram (Figure , 

Appendix A) is a graphical alternative to the Colebrook-White equation that allows for the 

friction factor to be determined by following the appropriate roughness curve to its 

intersection with the applicable Reynold’s Number. Usage of the Moody diagram however 

becomes tedious when iterative calculations are conducted. Alternative, explicit methods 
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based upon the Colebrook-White equation, such as the equation presented by Swamee and 

Jain (1976), are thus used in the design and modelling of these systems in programmes such 

as EPANET (Trifunovic, 2006). 
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 The Hazen-Williams equation (Equation [13]) is an alternate equation that relinquishes 

the dependency of the head loss ( p ) on the friction factor and Reynold’s Number. It 

utilizes the Hazen-Williams roughness coefficient (C ) and takes the form of: 

  

1

0.54
4.87

10.654( )
Q l

p
C d

    [13] 

The superiority of the Darcy-Weisbach equation over the Hazen-Williams equation has 

been repeatedly demonstrated, and lies in the fact that the former is theoretically based, 

while the latter is purely empirical (Trifunovic, 2006).  

2.4.3 Fluid Transient Phenomena: Water Hammer 

Water Hammer is a potentially dangerous transient flow phenomenon that involves the 

propagation of acoustic waves within pipelines. It is caused by rapid changes in the velocity of 

the fluid that flows through the pipeline, and is commonly accompanied by an unpleasant 

characteristic banging/hammering sound. These rapid changes may be a result of sudden, large 

valve movements, pump toggles or disturbances within the pipeline (obstructions, collapses, 

vibrations or deformation) (Mays, 2010). The most severe disturbance occurs in the event of 

power failures, where pumps are unable to maintain supply flows (Stephenson, 1972). The 

resultant acoustic waves constitute an additional pressure force, in addition to the mechanical 

forces due to loading, fluid pressure and other steady-state forces that must be withstood by the 

pipe material. In the case of a valve suddenly closing, a pressure wave is generated at the 

upstream side of the valve. The wave is then propagated upstream at a velocity close to speed 

of sound in the fluid medium (𝑢𝑐 ). At the instant of the wave generation and subsequent 

propagation, the fluid between the wave front and the valve is stagnant, while the fluid 

upstream is at the original velocity (𝑢). The pressure at the valve is that of the initial pressure 

(𝑝𝑜 ) added to the overpressure generated by the rapid closing of the valve ( 𝑝𝑔𝑒𝑛 ). The 

propagated wave, upon reaching the upstream end of the pipe results in the reverse flow of the 
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fluid at the initial velocity (𝑢). The wave is then propagated back to the valve. This back-and-

forth wave motion subsequently continues, but is dampened by frictional forces in the pipeline 

(Mays, 2010). Water column separation, vapourization and cavitation may result due to 

pressure drops caused by the generated overpressures and that may be exacerbated by the 

topography of the pipeline (Stephenson, 1972). 

The Joukowsky equation (Equation [14]) is used to obtain estimates of the waterhammer 

overpressures generated during transient flows. The derivation of the Joukowsky equation 

neglects the frictional effects and boundary effects at the pipe extremities (Mays, 2000).  

  𝑝𝑔𝑒𝑛 = 𝜌𝑓𝑙𝑢𝑖𝑑 × 𝑢 × 𝑢𝑐 [14] 

  wh

a
h u

g
      [15] 

The Joukowsky relation (Equation [15]), can be used to estimate the peak head change (∆ℎ) 

for a given change in velocity of the fluid. 𝑎 is the propagation velocity of the wave that is 

usually equivalent to the speed of sound in the fluid, and g is the gravitational acceleration. 

Typical values of 
𝑎

𝑔
 tend to be larger than 100 s (Mays, 1999). The wave propagation velocity 

can be calculated through Equation [16], which utilizes the modulus of elasticity of the fluid    

( FE ), that of the pipe wall ( RE ), the pipe wall thickness ( s ) and the Poisson Number ( p ) 

(KSB Aktlengesellschaft., 2006): 
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The Joukowsky relation accounts for the compressibility of the fluid and the elasticity of the 

pipe wall, but its application is severely limited due to its underlying assumption of an instant 

valve closure. Moreover, the equation fails to account for any column separation that may occur 

and cause additional overpressures. The relation cannot be applied to systems whose pressure 

could drop to below the fluid vapour pressure. The Joukowsky relation is applicable to systems 

that abide by following (Netrium., 2014a): 

 An unbranched, linear system – branches allow for the reflection of pressure waves and 

thus for constructive interference to occur within the pipeline. 



 

40 

 

 The system frictional pressure dissipation patterns should resemble that of a water 

distribution system. 

 The valve closure time should be less that the pressure wave communication time 

(Equation [17]). The communication time is the length of time that passes from the 

instant a wave is emitted, to the moment it reaches a source. Its importance within 

transient analysis is that any event whose duration is shorter than the communication 

time, is classified as instantaneous. The communication time can be calculated from the 

pipeline length ( l ) and the wave propagation velocity ( a ), through the use of the 

following equation (Netrium., 2014b): 

  
2

ct

l
t

a
    [17] 

In light of the abovementioned limitations of the Joukowsky relation, another simple relation 

exists that aids in benchmarking the results of the Joukowsky relation. The ‘steel pipe analogy’, 

(Equation [18]) is a simple analogy that circumvents the use of complex partial differential 

equations in order to examine the system transients. The PDEs that describe fluid transients are 

derived through a combinatorial application of the wavespeed relation, Newton’s Second Law 

and the conservation of mass and energy equations. The PDEs are highly complex and are thus 

solved in dedicated programs such as Pipenet, HAMMER, Hytran, Hypress, Impulse etc. 

(Ghidaoui et al., 2005).  

The ‘steel pipe analogy’ involves the visualisation of the fluid in the pipe through its inertial 

properties. This analogy ignores the finite compressibility of the water, the elasticity of the 

water and that of the conduit wall, and is therefore limited in its application. The ‘steel pipe 

analogy’, whcih is derived from Newton’s Second Law, thus predicts the overpressure through 

the rate of change of the velocity of the fluid (
u

t




). The ‘steel pipe analogy’ can be stated as 

(KSB Aktlengesellschaft., 2006): 

  
wh

l
p u

t


  

  [18] 

Protective measures against the effects of water hammer include (Stephenson, 1972): 

 Regulated (slowed) control of control valves, and pumps. 

 Installation of air vessels to mitigate pump failures by resuming the interrupted supply. 
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 Installation of a reflux non-return valve around the pump to limit the pressure difference 

between the pump discharge and suction. 

 Using the pump inertia to prevent an interruption to the supply, thereby relieving the 

severity of water hammer overpressures. 

 Installation of surge tanks (open-to-atmosphere) to reduce the effect of water surges by 

‘absorbing’ sudden changes of fluid flow. Break pressure tanks often serve the purpose 

of alleviating the severity of this phenomenon. 
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3 THE WESTERN AQUEDUCT 

The Western Aqueduct project forms part of a larger scheme to address the ever-increasing 

water demand that is in part due to a spate in urbanization within the region. The population 

growth rate in the eThekwini municipal jurisdiction is thus above the national average, while 

the municipal operational area has drastically increased within the last decade. The resulting 

overburden on the existing supply networks resulted in forecasts of impending water supply 

shortages (Anderson, 2013).  

The aqueduct augmentation projects, which include both the Western and Northern Aqueducts, 

was thus conceived to bolster the supply capability of EWS and to circumvent service delivery 

issues. The two aqueducts, upon completion, will be intimately related, with the Western 

Aqueduct supplementing the Northern Aqueduct. The NA will transport water to the Northern 

extents of the eThekwini municipal area including Umhlanga, Waterloo and Phoenix. 

The design and monitoring of the WA and its construction and subsequent commissioning was 

awarded to a joint venture between Knight Piesold, Naidu Consulting and Royal Haskoning 

DHV (Tancott, 2014). The joint venture is known as the Western Aqueduct Consultants’ Joint 

Venture (WAC JV). Knight Piesold is the lead member of the joint venture, Royal Haskoning 

DHV is the lead design member, and Naidu Consulting is a participant consultant. The initial 

investigations and designs for the Western Aqueduct (Project No. 4 918) were launched in the 

year 2000. In 2006, the first preliminary design for the first phase of the WA was submitted by 

the Knight Piesold and Naidu Consulting to the EWS. The WAC JV was subsequently 
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appointed in 2008 to execute the detailed design and construction monitoring of Phase 2 of the 

WA. Phase 2 includes the BPTs and their associated equipment (Fischer, 2014). 

3.1 Western Aqueduct Macroscopic Description 

3.1.1 Route 

The Western Aqueduct route, as shown in the plan view (Figure 13), falls within the 

jurisdictional areas of two, neighbouring municipalities. The project is thus divided between 

Umgeni Water and EWS. Phase 1 consists of the initial stretch of the pipeline, which links the 

Midmar Dam water works potable supply (Camperdown) to the Inchange Railway Station. 

This 17 km pipeline, which terminates at the eThekwini Metropolitan boundary known as 

“Point M”, is called the “57 Pipeline and is managed by Umgeni Water. Phase 2 is composed 

of 56 km of pipeline that terminates in Inanda and Pinetown, and falls under the management 

of EWS (Anderson, 2013). 

The WA route design prioritized the incorporation of the WA into the existing water pipeline 

infrastructure. This allows for maximum infrastructural overlap in order to drive down costs 

associated with incorporating the new system into the associated, existing infrastructure. The 

pipeline route design also included considerations to eliminate the need for any pump stations. 

This inherently decreases the chances of service failures due to power outages and pump faults 

or maintenance. Long-term operational costs are thus also decreased through the elimination 

of electricity dependence. The current potable water supply infrastructure, particularly in the 

higher-lying service areas, make extensive use of pumping stations (Anderson, 2013). 

Additionally, in order to obtain permission for the construction to commence, the pipeline route 

had to satisfy the requirements of the KwaZulu-Natal Department of Agriculture and 

Environmental Affairs and the KwaZulu-Natal Heritage Act. This included the preservation of 

sites of heritage importance and environmentally sensitive areas. Cognisance was also given to 

the inconvenience to the general public during construction periods, which would require a 

working access strip of up to 30 m in width (Anderson, 2013).  

The pipeline route, as presented in Figure 2, commences at Umlaas Road, after which it largely 

maintains adjacency to the N3 highway. The pipeline remains parallel to the N3 throughout its 

passage through Camperdown and Cato Ridge toward the Inchanga Railway Station. The route 

subsequently begins to diverge from the N3 as it traverses the Outer West supply area, moving 
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towards Drummond, Assegai, Waterkloof and Hillcrest. The main pipeline then restarts a new 

adjacency, to the M13 freeway, as it leads through Gillits, Everton and Kloof toward Wyebank 

Road. The pipeline then follows the M13 toward its termination at Ntuzuma near Inanda. Along 

this main route, there are two branches, which serve to supply water to strategic locations that 

lie away from the main route. The first branch extends from the main pipeline in Haygarth 

Road in Kloof, and cuts across the N3 toward Tshelmnyama near Pinetown. The second branch 

extends out of the pipeline that stretches toward Ntuzuma, to serve the other portion of the 

Inner West supply area through the Mount Moriah reservoir.  

Georgedale
Hammarsdale LL

Hammarsdale HL

Hammarsdale IV

Inchanga IV

Impala ridge IV

Cato Ridge

Umlaas Road reservoir

Cato Ridge IV

Georgedale IV

Point  M 

Alverstone Nek res

Alverstone IV

Bothas Hill res

Westriding 1 res

Knelsby res

Kanelaniway ET

Emoyeni res

Emoyeni IV
Ashley 

Drive BPT

Emberton res

Hawkstone Rd PS

Summerhills ET

Summerveld Jockey ET

N3 to JNB

N3 to DUR

 

The WA route allows for the provision of potable water to eight critical supply reservoirs that 

will service areas within the Outer West and Inner West supply areas. A list of reservoirs that 

are directly connected to the Western Aqueduct mains, together with their estimated draws and 

their yearly growth rates is provided in Table 2 (Anderson, 2013). The augmentation feature 

of the WA to the NA is also a significant function, as new developments at the King Shaka 

International Airport, the Dube Trade Port and the Cornubia residential development are 

Figure 13 - Plan view of the WA route up to the AD BPT, showin/g the location of offtakes 

and reservoirs (Fischer and van Rooyen, 2013) 
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forecasted to place additional strain onto the northern supply service infrastructure (Macleod, 

2013).  

3.1.2 Topography 

The large descents in altitude along the path of the WA allow for the WA to be a gravity-fed 

system, thus eliminating the reliance of the system on booster/pumping stations. The large 

descents however necessitate the inclusions of BPTs within the system in order to reduce the 

maximum working pressures to manageable, reasonable pressures and to divide the system into 

separate pressure zones. The maximum working pressure is limited due to its influence on the 

diameters of pipes, the pipe materials, and the working life of the system components 

(including pipes, fittings, valves etc.). The BPTs are situated at Ashley Drive (Hillcrest) and at 

Wyebank Road (New Germany). The maximum static pressure (elevation difference) between 

the Umlaas Road reservoir and the Ashley Drive BPT is 194 m, while the elevation difference 

between the two BPTs is 183.5 m. This corresponds to the recommendations by Ratnayaka et 

al. (2009) to equalize the maximum static head on either side of the BPT. Additionally, it is 

advantageous in terms of economies of scale, as it allows for the pipe material on either side 

of the BPTs to be of similar grades. Furthermore, the maximum static head is kept to below 

20 bar, as per the heuristic suggested by Stephenson (2012).  

The longitudinal section diagram (Figure 14) shows the heights of the BPTs and reservoir 

offtakes along the pipeline route. The WA route can be seen to be extremely hilly, with the 

multiple localized peaks and troughs throughout the longitudinal section, presenting a jagged 

appearance. The entire route can be observed to lie below the hydraulic grade line of the system 

(see Section 2.4.2), and the fluid is thus adequately pressurized. In general, the reservoir 

offtakes are at successively lower levels, thus avoiding the use of pumps. The positioning of 

air valves, scour valves and isolating valves along the pipeline route are also shown in Figure 

14. 

3.1.3 Reservoirs 

The WA conveys potable water to its service areas though multiple reservoirs, that are either 

connected directly to the trunk mains, or are connected through other reservoirs. A complete 

list of reservoirs connected directly to the trunk mains is provided in Table 2. The list is in 

sequential order of the connections along the pipeline route. The average estimated consumer 

demand on each reservoir, the forecasted year-on-year (y/y) growth rate and the peak-to-mean 
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factor for each reservoir is provided alongside the reservoir name. It can be seen that the 

Ntuzuma - NR5 (80.9 𝑀ℓ/𝑑𝑎𝑦 ), Alverstone Nek (28.3 𝑀ℓ/𝑑𝑎𝑦 ), Mount Moriah                   

(27.7 𝑀ℓ/𝑑𝑎𝑦 ) and Tshelmnyama (18.8 𝑀ℓ/𝑑𝑎𝑦 ) reservoirs have the largest consumer 

demands. These demands are especially significant considering the sizes of the BPTs (20 𝑀ℓ 

& 10 𝑀ℓ). The draw schedules of these reservoirs thus have a major effect on the operation of 

the BPTs. 

Table 2 - List of reservoirs connected directly to the WA. The y/y growth factors, yearly 

demands and peak to mean factors are also listed for each. 

 

  

Reser
voir # 

Reservoir Growth 
Factor (y/y) 

2006 Demand 
(Mℓ/day) 

2015 Demand 
(Mℓ/day) 

2036 Demand 
(Mℓ/day) 

Peak/Mea
n Factor 

Basis of 
demands 

0 Georgedale 2,0% 7,3 8,7 13,2 1,2 UW sales 
meters 

1 Cato Ridge 2,5% 5,0 6,2 10,5 1,2 UW sales 
meters 

2 Sterkspruit 
Res 

0,5% 0,0 2,1 2,3 1,2 Estimate 

3 Hammarsdale 
HL Res 

2,0% 7,7 9,2 13,9 1,2 Logging by 
EWS 

4 Alverstone 
Nek Res 

1,0% 21,0 23,0 28,3 1,2 Logging by 
EWS 

5 Summerveld 
Elev Tank 

1,0% 0,5 0,5 0,7 1,2 Logging by 
EWS 

6 West Riding 
Res 

2,0% 5,8 6,9 10,5 1,2 Logging by 
EWS 

7 Knelsby Res 1,0% 2,0 2,2 2,7 1,2 Estimate 

8 Emoyeni Res 1,0% 3,5 3,8 4,7 1,2 Logging by 
EWS 

9 Emberton Res 1,0% 5,3 5,8 7,1 1,2 Logging by 
EWS 

10 Haygarth Rd 
Res 

1,5% 10,0 11,4 15,6 1,2 Umgeni 
Water report 

11 Tshelimnyama 
M1B Res 

1,5% 12,0 13,7 18,8 1,2 Umgeni 
Water report 

12 Abelia Rd Res 1,0% 6,2 6,8 8,4 1,2 Logging by 
EWS 

13 Jerome Drv 
Res 

1,0% 6,0 6,6 8,1 1,2 Umgeni 
Water report 

14 Wyebank Res 0,5% 3,8 4,0 4,5 1,2 Logging by 
EWS 

15 Mount Moriah 
Res 

0,5% 23,9 25,0 27,7 1,2 UW sales 
meter 

16 KwaDabeka 1 
Res 

1,0% 11,0 12,1 14,9 1,2 UW sales 
meter 

17 Ntuzuma 5 
Res 

1,0% 60,0 65,6 80,9 1,2 Restor 
Africa 
logging 

18 Duffs Rd     100,0   

 Total demand 191,0 213,6 372,7   
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  Figure 14 - Longitudinal Section of the WA route including the "57 pipeline up to the AD BPT (Fischer, 2014) . 
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3.1.4 Pipes 

The WA trunk mains are constructed solely of pipes of nominal diameters of 1 400 mm or 

1 600 mm. The section between the Umlaas Road reservoir and “point M” is constructed of 

1 400 mm diameter pipe. The subsequent trunk mains, up to the Alverstone Nek reservoir 

offtake, are constructed of 1 600 mm diameter pipes whereafter all ensuing pipes on the trunk 

mains are 1 400 mm in diameter. The diameter of the pipes were selected in order to limit the 

fluid flow velocity to 3 m/s, at 400 𝑀ℓ/𝑑𝑎𝑦 supply. Another concern was the required gently 

modulating velocity within the pipelines in order to avoid highly fluctuant draws from the 

Umgeni Water supply node (Fischer and van Rooyen, 2013). 

 

Figure 15 - Photograph of a 1.4m, 400  𝑴𝓵/𝒅𝒂𝒚 pipe at the AD BPT site. 

The constructions of the WA pipelines were awarded as separate contracts through a highly 

publicised and somewhat disputed tender process. The first of the six contracts that comprise 

the WA, which includes the 7 km of pipeline leading to the Alverstone Nek offtake was 

awarded to Cycad Pipelines. The second contract, which involves the pipeline from the 

Alverstone Nek reservoir to the AD BPT was awarded to WK SA Construction. Esor 

Construction won the last contract, which involves the largest pipeline stretch, from the AD 

BPT to the Ntuzuma 5 (NR5) reservoir in Ntuzuma (Creamer Media., 2015). The other three 

contracts include one for each BPT, and one for the remaining pipeline branch that leads to 

Tshelmnyama which was also awarded to Esor Construction (Tancott, 2014). The statuses of 

the contracts are presented in Table 1.  

The trunk main pipeline lengths and diameters are presented in Table 3. The grade of the 

materials of construction (mild steel) of these pipelines are shown in Table B1, Appendix B. 

All pipelines have been fortified with corrosion protection. The total pipeline length from the 

Umlaas Road reservoir to the NR5 reservoir is 60.08 km. Of this, the pipeline length from 
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Umlaas Road to the AD BPT is 40.01 km, while the pipeline length between the two BPTs is 

9.34 km. The total average demand forecasts for each of these three subsections are; 86.8 

𝑀ℓ/𝑑𝑎𝑦, 58.0 𝑀ℓ/𝑑𝑎𝑦 and 227.9 𝑀ℓ/𝑑𝑎𝑦 respectively. It should be noted however, that the 

pipes are in series, and thus the conveyance within the first subsection is the sum total of all 

three demands (Fischer, 2014).  

Table 3 - Trunk main pipeline information (length and diameters) for the WA 

(Doorgapershad 2015). 

3.2 Microscopic Description (BPTs) 

3.2.1 BPT design requirements 

The BPTs were designed to comply with the following basic requirements that were set by the 

EWS (Fischer, 2014): 

1. The tanks should consist of two compartments in order to facilitate the maintenance, 

cleaning and scouring of the compartments individually. 

2. It should be possible for the gravity feed to discharge into either or both compartments. 

3. The inlet flow volumes to the BPT should correspond to the demands on the 

downstream supply units in order to retain the setpoint water level of the BPT to 50% 

of its maximum level. 

4. A PLC (programmable logic controller) should be used to control the gravity feed into 

the BPT. 

Trunk Main Pipeline Information Length Diameter 

From: To: km mm 

Umlaas Rd Point M 8,138 1400 

Point M Georgedale offake 1,194 1600 

Georgedale offake Cato Ridge offtake 2,225 1600 

Cato Ridge offtake Sterkspruit 7,639 1600 

Sterkspruit Hammarsdale HL 4,212 1600 

Hammarsdale HL 1000 Hills/Bothas Hill 8,100 1600 

1000 Hills/Bothas Hill Alverstone Nek 0,030 1600 

Alverstone Nek Summerveld Elevation Tank 1,800 1400 

Summerveld Elevation Tank West Riding 1,400 1400 

West Riding Knelsby 1,050 1400 

Knelsby Emoyeni 0,500 1400 

Emoyeni Emberton 4,300 1400 

Emberton Haygarth/M1B 3,300 1400 

Haygarth/M1B Abelia Rd 1,063 1400 

Abelia Rd Jerome Drive 1,140 1400 

Jerome Drive Wyebank 3,500 1400 

Wyebank Mount Moriah offtake 0,429 1400 

Mount Moriah offtake KD1 offtake 2,062 1400 

KD1 offtake NR5 8,000 1400 

Mount Moriah offtake Mount Moriah Res 6,300 1000 
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5. The BPT gravity outlet stream should not have a remote override. Manual intervention 

should thus be necessary for isolation purposes in case of burst pipes or maintenance 

downstream. 

Apart from these conditions, the maximum working pressure, the maximum velocity and the 

mitigation of surge overpressures also were considered in the design of the BPTs.  

* Cogeneration was not accommodated for, since progress was lacking. In order to operate the 

Western Aqueduct, the current design was thus necessary. The cogeneration at the BPTs is 

currently the subject of a feasibility study by EWS (Fischer, 2014). 

3.2.2 Valves 

3.2.2.1 Valve selection & design process 

As per the project outcomes, in order to ensure that the design is completely interrogated by 

the simulation tests, it is important to fully understand the reasons and criteria that governed 

the valve selection and the structure of the inlet control mechanisms.  

3.2.2.1.a Valve usage 

The primary consideration for the selection of the valves was the BPT operation during 

electrical outages, and the possibility of overflows during such outages. As an alternative to 

control valves, the telemetric opening of downstream reservoirs in order to accept additional 

flows was considered. This was rejected on the basis of its lack of sustainability (Fischer, 

2014).  

3.2.2.1.b Valve type  

Sleeve valves could not be independently used, as hydraulic actuators (control using pipeline 

pressure – for power failures) could not be procured as a proprietary design. It would thus be 

necessary to purpose-design the hydraulic actuators for the WA, which would result in 

exorbitant costs and lack of reliability testing that accompanies proprietary equipment from 

reputable suppliers. The use of a petrol or diesel generator could be argued for, as the sleeve 

valve actuators require a relatively small amount of electricity, and a small generator would 

thus suffice. This option however could not possibly be instituted due to maintenance and 

burglary complications. The use of an uninterrupted power supply system was also ruled out 

on this basis. The use of counterweights to automatically shut the (isolation) butterfly valves 

upstream of the sleeve valves upon loss of electrical power was rejected. This was due to the 
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added complications that could arise from the requirement of manual intervention in order to 

restore water supply  

The final design thus advocated for the use of hydraulically-operated globe valves upstream to, 

and in series with, the sleeve valves. This design allows for the sleeve valves to assume the 

bulk of the flow regulation responsibilities during normal operation, and the globe valves to 

maintain service during electrical power outages. Added arguments in favour of the 

employment of globe valves included their verified reliability and their familiarity to EWS 

staff, particularly with regards to maintenance and operation. 

In order to mitigate cavitation damage and to allow for a high flow rate range, a parallel 

arrangement of globe valves was deemed necessary. A total of three DN600 valves, in a parallel 

arrangement of three identical valves, was preferred at each BPT, as an impractically and 

uneconomically large number of valves would be required for any smaller sized valves. The 

sleeve valves were sized in order to provide an operational working range between 20% and 

80% of their stroke, in order to minimise excessive noise and vibrations. It was decided that a 

parallel arrangement of three DN300 sleeve valves, downstream and in series with the parallel 

arrangement of globe valves, would thus be sufficient (Fischer, 2014).  

 Final-design valve purposes and operation 

The sleeve valves were selected as the flow regulating mechanism of choice. This is due to the 

highly fluctuant upstream pressures and the high range of flows that are expected. In order to 

mitigate the loss of control that accompanies power outages, hydraulically operated globe 

valves were placed in series to the sleeve valves. The primary purpose of the globe valves is to 

shut off inlet flows at high BPT levels to avoid overflows. The issue of disturbed motion along 

the stroke of the globe valves, which could arise due to their infrequent use, was envisaged to 

be mitigated through the periodic movement of the globe valves by the central PLC, as the 

globe valve is not to be used to regulate flow (Fischer, 2014). 

3.3 BPT Description 

3.3.1.1 AD BPT location and topography 

The AD BPT is located at the border of the Emberton Estate Development, at the junction of 

Ashley Drive and Old Main Road in Hillcrest. The BPT is situated adjacent to a golf course. 
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The elevation difference between the AD BPT site and the Umlaas Road reservoir supply node 

is 194 𝑚. The top water level of the BPT is set to 655.2  𝑚𝑠𝑙, and the normal operating level 

(NOL) is 651.2 𝑚 𝑚𝑠𝑙 (50 % level of BPT) (Fischer and van Rooyen, 2013). 

3.3.1.2 BPT internals 

The AD and WR BPTs both consist of two compartments. The dimensions of the AD BPT are 

64 𝑚 x42 𝑚 x8 𝑚 and those of the WR BPT are 26 𝑚 x52 𝑚 x8𝑚. The AD BPT is designed 

to store 20 𝑀𝑙 of liquid, while the WR BPT is designed to store 10𝑀𝑙 (Van Rooyen, 2015). 

The internal components of both BPTs, as is described hereunder, are identical.  

Simple description (Figure 16): Inlet flows to the BPT are through a 1 400 mm diameter pipe. 

Three parallel offtakes, each with a globe valve, connect to the inlet pipe on one end, and lead 

to another 1 400 mm diameter common manifold. Three parallel offtakes, each with a sleeve 

valve, are connected to the common manifold. These offtakes lead to a common inlet launder 

that allows flow into the two BPT chambers by overflow over a weir. Butterfly valves are 

placed around each valve to facilitate isolation, and gate valves allow for drainage of the sleeve 

valve chambers for maintenance purposes. 

Inlet launder

DN800 butterfly valve 
(open)

DN600 globe valve

DN800 butterfly valve 
(open)

DN800 butterfly valve 
(open)

DN100 gate 
valve

DN300 Sleeve 
valve inside 

chamber

DN1400 common manifold

To BPT compartments

From Umlaas Road reservoir

 

Figure 16 - Simplified schematic of the AD BPT inlet subsystem showing the valves and 

the major pipework. 

Engineering description (Figure 17): The inlet pipe into the BPT is a DN1400 pipe, with a 

DN1400 bullnose end that is 3 300 mm in length. The pipe has three identical offtakes 

connected successively to it in a parallel arrangement. These offtakes lead to a common 

manifold through a single DN600 globe valve on each line. The offtakes that lead toward the 

globe valves are DN800 PE pipes with flanged ends. A DN800 butterfly valve is situated on 
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each line before the globe valves to facilitate the isolation of the valves for maintenance or 

emergency situations. The DN800 butterfly valve is bypassed with two DN100, 90° smooth 

radius bends that link to the supply and discharge of a DN100 butterfly valve. A 310 mm 

DN800xDN600 PE reducer is used to connect the DN600 globe valves to the DN800 line. The 

pipeline leading to the manifold consists of a reducer, butterfly valve and its bypass, in a reverse 

arrangement that is identical to that explained above. The common manifold is a DN1400 with 

DN1400 bullnose ends. Three identical DN800 offtakes, also in a parallel arrangement are 

connected to the manifold with DN1400 tees. Each identical offtake leads through a 7-segment, 

DN800, 90° duckfoot bend before leading to a DN800 butterfly valve. The butterfly valve is 

bypassed identically to the butterfly valves in the branched lines leading to the common 

manifold. A stainless steel DN800xDN300 reducer is used to connect each branch to the 

DN300 sleeve valve, each submerged within its own chamber, which also contains an anti-

erosion plate. A DN100 wedge gate valve is situated on each sleeve valve chamber. The sleeve 

valve chambers lead to a common inlet launder that has an overflow weir that will allow the 

water to flow into the BPT compartments. The electric actuators for the sleeve valves are 

situated prior to the stainless steel reducers. The outlet pipe from the BPT will also be fitted 

with a DN200 air valve in order to limit damage to the pipeline should drainage be carried out 

with the outlet shut (Fischer and van Rooyen, 2013). Figure 16 is a simplified schematic of the 

BPT subsystem, and Figure 17 is a full technical drawing it. 
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DN1400 inlet pipeDN1400 bullnose end

Parallel offtake 
(DN800)

DN600 globe valve

DN800 butterfly valve
Bypass arrangement 

around butterfly valve

Bypass arrangement 
around butterfly valve

DN1400 common 
manifold

Parallel offtake 
(DN800)

DN1400 bullnose end
DN1400 bullnose end

DN800 butterfly valve

DN300 sleeve valve in 
sleeve valve chamber

DN100 wedge gate 
valve

 

Figure 17 - Full technical drawing of the BPT inlet subsystem, including valves, pipework 

and dimensions (Fischer and van Rooyen, 2013). 

 

The sleeve valves are placed into a submerged chamber in order to prevent erosion of the floors 

and walls by water jets. An anti-erosion plate is also provided for this reason. The wedge gate 

valves allow for the sleeve valve chambers to be drained to allow for maintenance. The sleeve 

valve chambers lead to a common inlet launder, through a penstock, which contains an 

overflow weir to pass the water to the BPT compartments. In order to prevent the backflow of 

water into the sleeve valve chambers, the chambers are configured with an open hole in the 

wall that can be closed by the installed penstock. This configuration allows for a low pressure 

loss, and negligible chlorine depletion, but could leak if the penstock is not tightly shut 

(Fischer, 2014). 

The BPT outlet has an overflow chamber, toward which the BPT floor is made to slope, in 

order to facilitate easy cleaning/scouring. The roof is also sloped toward the overflow chamber 

in order to pass rainwater runoff to the chamber. The overflow weir from the BPT is designed 
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for 279 Mℓ/day, which is for 150% of the peak demand (186 Mℓ/day). The overflow weir 

drains from a hole in the BPT wall into the overflow chamber. In order to mitigate overflow 

situations, the overflow pipe is designed to convey up to 3 
𝑘ℓ

𝑠
, corresponding to the flow through 

a single DN300 sleeve valve at 80% of its stroke open.  

The BPT is designed with various manholes and access ways in order to enable easy cleaning, 

scouring and maintenance. These also serve to accommodate the fitment of a telemetry system 

after the construction. The BPT in its entirety, barring the inlet chamber, is situated 

underground. An underdrain is provided in order to identify leaks, and to account for the 

possibility of leakage through the BPT floor or floor joints. 

The valves have manual overrides, in the form of handwheels, in order to allow operator 

intervention in emergency situations. Isolating butterfly valves are also provided in order to 

enable the isolation of the globe valves, sleeve valves or butterfly valves.  

Each BPT compartment is equipped with an ultrasound level sensor that relays the liquid level 

within the compartment to the PLC. The PLC is the controller in the feedback loop, and serves 

to determine and set the valve positions based upon the level within the BPT compartment. The 

higher of the two levels is responded to (high select), in order to allow the disabling of a BPT 

compartment without altering the control system. Each globe valve is equipped with a float 

valve that will be mounted externally in order to maintain visibility from the control room. The 

float valves, which provide a contingency for control during power outages, are set to react at 

different levels in order to limit transient overpressures. The floats are placed within the inlet 

launder instead of a BPT compartment, so that cleaning/maintenance of the compartments does 

not affect the valve control. A full technical schematic of the BPT control system is presented 

in Figure 19. 

3.3.2 Control System (Control 1.0) 

The Western Aqueduct control philosophy, which is configured through the central PLC, 

comprises sub-regions that dictate a desired position of the valves. Upon the BPT level entering 

into the sub-region, the valves are prompted to begin moving toward the pre-configured desired 

position. The movement of the valves are regulated (slowed rate of movement) in order to 

mitigate transient overpressure generation. The sleeve valves are intended to traverse their 

entire workable range (0%-85%) in 5 minutes, and the globe valves (0%-100%) in 7 min and 
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49 sec. The target normal operating level (NOL) is 50% (Fischer, 2014). A summary of the 

control system is presented in Figure 18.  

During the initial design phases, the peak flow (150 Mℓ/day) provision for the Duffs (Aloes) 

reservoir was not considered. As such, testing peak factors were reduced, and both sleeve and 

globe valve movements were slackened (to the aforementioned movement rates) in order to 

compensate for the inadequate pipe grades and thicknesses. In order to enact adjustments to 

the globe valve movement rate, orifice plates or needle valves may be used to slow the 

filling/emptying of liquid into the hydraulically-operated globe valve’s bonnet (Fischer and 

van Rooyen, 2013). 

 

Figure 18 - BPT control system (Control 1.0) overview (Fischer, 2014). 

Consider the scenario wherein the BPT level is relayed to be between 50% (4.0m) and 62.5% 

(5.0m), and all sleeve valves are at 50% and globe valves at 100% open. In this case, no valve 

movements will be initiated. When the BPT level exceeds 62.5% (5.0 m), sleeve valve three is 

prompted to move to 25%. The valve however, is governed to move at a rate of 17% of its 

stroke per minute. It will thus move successively toward 25%, provided the level does not 

breach the 62.5% (5.0 m) or 68.8% (5.5 m) barriers (current sub-region boundaries). The globe 

valves are programmed to move in much the same manner. If the valve positions are 
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inconsistent with the requirements of the PLC control algorithm, simultaneous valve 

movements will occur, still at the restricted movement rate, until the BPT levels and valve 

positions correspond to the control algorithm requirements. This could occur immediately after 

power is restored, if the BPT levels are within the upper 20% of the BPT.  

3.3.3 Control 2.0 

Control 2.0 is a revised control system for the WA that was finalized at the end of January 

2016. This complete overhaul of the original control system had become necessary due to 

concerns that were supported with the preliminary results of this study. Table 4 presents the 

lookup-table that describes the PLC decision process for Control 2.0. 

Table 4 - Decision lookup-table for Control 2.0 (Fischer and van Rooyen, 2015). 

Valve Position Water Level >4,5m Water Level <3,5m 

0% 
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25% 

30% 

35% 

40% 

45% 

50% 

55% 

60% 

65% 

70% 

75% 

80% 

85% 

 

Control 2.0 operates using a true deadband philosophy, in combination with sequential, 

individual (sleeve) valve movements. The control system, as shown in Table 4, is devised 

around a central deadband between 3.5 m and 4.5 m, that corresponds to the design intent of 

maintaining the level setpoint at 50%. Every 30 seconds, any breach of the deadband 

boundaries triggers the movement of a single valve, which is selected in sequence by the PLC 

according to its current position. The valve movements are regulated to 5% per 30 second 

interval, although the movement between 0% and 25% (and its reverse) occurs in a single 

movement (30 seconds). The globe valves, which are regulated to move their entire workable 
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range (0%-100%) in 7 minutes 49 seconds, begin simultaneously closing upon the liquid level 

in the BPT exceeding the high-high BPT level (8.3 m). The aims of Control 2.0 are: 

 To limit the maximum inlet flowrate through the sleeve valves to 373 
𝑀ℓ

𝑑𝑎𝑦
 

 Utilize the hydraulically actuated (globe) valves as a high-level backup during 

emergency outages 

 Allow the sleeve valves to be manually adjusted through the use of handwheels 

Consider the scenario in which the BPT level is to exceed 4.5 m. The control valve at the 

highest position will be prompted to close by 5%. If the valve is at 25%, it will move to the 

closed (0%) position. After 30 seconds, if the BPT level is still above 4.5 m, the next most-

open sleeve valve (currently highest position) will be prompted to move towards its closed 

position, again at 5%. In this manner, a step-like configuration is formed, where valve 

movements are alternated between on-duty sleeve valves. The globe valves, as per the design 

intent, will only begin closing if the liquid level in the BPT exceeds 8.3 m. The globe valves 

will move simultaneously at their regulated movement rate, in order to supplement the flow 

control duty of the sleeve valves. 
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Figure 19 - Technical schematic layout of the Ashley Drive BPT and its inlet controls (Fischer, 2014).
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4 MODELLING APPROACH 

The model was selected based upon the initial directive issued by the eThekwini Municipality’s 

Water and Sanitation unit (EWS), which formed the basis of the project. The project outcomes 

were thus defined through this explicit request, and the inference of any other results that would 

be of benefit to the strategic interests of EWS.   

The study outcomes were determined to be a combination of reliability tests, system behaviour 

analyses and vulnerability assessments. Although the analysis of the system’s ability to 

withstand failure scenarios was deemed to be of primary importance, surface-concepts from all 

the above were utilised within the processes followed within this study. The modelling method 

presented by Clark et al. (1988) was loosely followed in the delineation of the project and 

construction of the model. The adapted method is shown in Figure 20. 

4.1 Model Selection 

1- Model Selection

2- Software selection

3 – Network 
Representation

 Project Definition
 Skeletonization

4 – Data Assimilation & 
Data Handling

 Drawings & 
Schematics

 Documentation

 Site Visits

5- Model Construction

 Variable Assignment 
& Data Input

 Regression
 Hydraulic 

Calculations

6-Model Calibration, 
Verification & 

Application

7- Analysis & Display of 
Results 

 

Figure 20 - The modelling process followed. Adapted from Clark et al. (1988). 
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It was decided that in order to adequately assess the performance of the system and to facilitate 

master planning and operator training, an extended period simulation (EPS) would be 

necessary. A simple mass balance evaluative model, however was ruled out due to its drawback 

of not sufficing for any level of pressure analysis. A cross-mixture of the simplified hydraulic 

model in conjunction with the regression model (Section 2.4.1.1) was thus selected in order to 

best suit the intended application and required outcomes. This model was envisaged to be 

robust enough to accommodate any construction-phase changes, and would be simple to 

calibrate. This model was preferred over the complete hydraulic model due to time limitations 

and the increased versatility offered by the former, in terms of the ability to quickly solve the 

model on possibly-dated computers. 

4.2 Software Selection 

1- Model Selection

2- Software selection

3 – Network 
Representation

 Project Definition
 Skeletonization

4 – Data Assimilation & 
Data Handling

 Drawings & 
Schematics

 Documentation
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5- Model Construction
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6-Model Calibration, 
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Application

7- Analysis & Display of 
Results 

 

MATLAB was selected as the programming package due to its widespread availability in South 

Africa, its flexibility and popularity amongst members of the applied mathematics, engineering 

and allied fields. MATLAB also features a plethora of inbuilt commands, features and 

toolboxes and is able to represent results in a neat, discernible graphical manner. The intuitive 

language, extensive help resources, online support forums and the researcher’s experience with 

the program also contributed to its selection over EPANET and GAMS.  

Structured programming was used in order to maintain a desirable level of simplicity within 

the interconnected program code. Furthermore, basic coding language was used, and 

explanations were included in the form of comments, in order to improve the readability of the 

code. For the same reasons, an input data panel is included at the top of the code, with the 

required measurement units included as comments. All required input data can thus be easily 

entered into the data panel, eliminating the need to sift through the code to locate the necessary 

inputs. Every effort was made to ensure that the program could emulate possible real-world 

application conditions e.g. the inclusion of a (past) layered stack for the control valve 
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movements. Furthermore, function calls were programmed in a generic manner, thus allowing 

them to be reused multiple times, and avoiding the need to edit the function for a change in the 

form of inputs (e.g. number of co-ordinate pairs for regression, number. of reservoir volumes 

to integrate etc.).  

The MATLAB program includes the programming for the generation of pertinent graphs in 

order to display results and relationships in an easy-to-analyse manner. The data storage need 

was addressed through the use of the “xlswrite” function that allows MATLAB to print 

specified results into an Excel spreadsheet. The supplied spreadsheet is equipped with headers 

and labels as well as graphs for the input data. The advantage of the spreadsheet storage system 

is the increased readability of the results and the malleability of the graphing software through 

Excels graphical user interface. The presentation graphic in the Excel spreadsheet is shown in 

Figure C1, Appendix C.  

4.3 Network Representation 
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4.3.1 Project Definition 

The project definition process was initiated by a data surveying phase. Data surveying was 

conducted in order to define the boundaries of the scope of the project. During this phase, the 

necessary and available data, for use within the model, was identified and compared. Data 

acquisition was subsequently initiated using a top-down approach, thereby decomposing the 

entire system into more specific subsystems. The macroscopic data, which includes the 

Western Aqueduct (WA) layout and topography were initially collected in order to completely 

understand the extents of the WA system, and its effect on the projected trajectory of the study. 

The acquisition of the microscopic data involved meetings with the EWS consultants that were 

tasked with the design, implementation and construction of the system, in which the system 

together with other related background material were discussed. This was seen as necessary in 
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order to ensure that no misunderstandings would undermine the quality of the study, thus 

avoiding time-consuming errors. These meetings were also essential to ensure that the 

expectations of EWS was aligned to the projected outcomes of the study.  

4.3.2 -Skeletonization 

Umlaas Road Reservoir

Ashley Road BPT (20Ml)

Wyebank Road BPT (20Ml)

Emberton 
Reservoir

Tshelmny
ama 

Reservoir

Haygarth 
Reservoir Abelia 

(Kloof) 
Reservoir

Jerome 
Drive 

Reservoir

Mount 
Moriah 

Reservoir

Wyebank 
Reservoir

KwaDabe
ka1 

Reservoir

Ntuzuma 
5 (NR5) 

Reservoir

Lumped 
Demand

0.53 km 1400 mm

3.30 km 1400 mm

1.06 km 1400 mm

1.14 km 1400 mm

3.26 km 1400 mm

0.24 km 1400 mm

0.43 km 1400 mm

2.06 km 1400 mm

8.00  km 1400 mm

20.01 km 

20.01 km 

 

Figure 21 - Skeletonized representation of the WA. 

The skeletonization was carried out according to the procedure outlined in Section 2.4.1.3.a. 

The aim of the skeletonization procedure was to simplify the modelling and calculation 

procedure without significantly affecting the accuracy of the model results.  

With a complete understanding of the requisite outcomes of the project, it was decided that the 

pressure profile of the trunk main ‘central spine’ (Figure 21) would be necessary, yet in order 

to ensure that the accuracy of the pressure profile, the mass balance of the system would have 
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to be conserved. This was achieved by ‘fixing’ the value and location of offtake draws, 

allowing for the dynamic losses within the trunk mains to be accurately calculated while 

accounting for the change in flowrate due to each offtake draw. 

The ‘fixing’ of offtake flows was achieved through the assumption that the offtake flows (to 

reservoirs) can be accurately represented by the ‘characteristic flow’ – the flow that occurs in 

a reservoir intake line when its valve or pump is activated. The characteristic flow was 

calculated by the procedure outlined in Section 4.4.3, by examining level-time graphs for each 

reservoir, allowing for simultaneous outflow to consumers. The reservoir offtakes after the 

Ashley Road BPT were considered individually, as the impact of their drawing schedules, 

which is determined by their inlets switching at upper and lower levels, in response to varying 

consumer demands, were projected to have an appreciable impact on the operation of the BPTs.  

In the case of reservoirs supplied from the aqueduct between Umlaas Road and the Ashley 

Drive BPT, these were lumped into a single, static demand draw at the midpoint (see Figure 

21). The value of the static (constant) demand draw was calculated as the sum total of the 

average consumer draws on each of the included reservoirs, for the specified year. This was 

deemed as pragmatic, as these early draws are relatively small and the focus of the study leans 

more heavily towards the performance of the BPTs. 

By eliminating the consideration of pressure profiles within the offtake branches and fixing the 

value of offtake flows as each reservoir draws, the trunk main’s pressure profile is thus 

decoupled, allowing for its determination directly through the hydraulic calculations and a 

trunk mains and offtake mass balance, rather than through the solution of a highly-coupled, 

network-wide pressure balance that is expected to only marginally improve calculation 

accuracy for the desired pressures. 

The system was then inspected to confirm that the fundamental structure of the system 

remained unaltered, and that no significant portions of the distribution system were 

unaccounted for. This was followed by the construction of a flowchart of the skeletonized 

system, in order to understand the outstanding data requirements, and formulate a basic 

mathematical strategy to represent the system. The skeleton flowchart also served the purpose 

of providing the foundation to begin the evaluation of solution strategies and the assessment of 

the impact of the accuracy of information and approximations on the results of the model. The 

outstanding data requirements were then requested from the relevant parties (data types and 

sources are presented in Table 6). 
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Table 5 - Data sources, their estimated impact on the model, their estimated accuracy, 

and recommendations on their usage. 

Data  Source  Impact 

on model 

Estimated 

accuracy 

Recommendation(s) 

System 

(macroscopic) 

Layout  

EWS/Consultants High +++++ Adjustment only necessary if 

changes to infrastructure are 

planned. 

System Topology EPANET Model Results High +++++ - 

System 

(microscopic) 

Layout 

EWS/Consultants & 

Construction Supervisor 

(Site Inspection)  

High +++++ Adjustment only necessary in case 

of maintenance or changes to 

infrastructure are planned. 

BPT Dimensions 

and Construction 

Plans 

Construction Supervisor 

(Site Inspection) 

High +++++ Adjustment only necessary in case 

of maintenance or changes to 

infrastructure are planned. 

Pipe Lengths EWS/Consultants High +++++ - 

Pipe Diameters EWS/Consultants High +++++ - 

Pipe Materials EWS/Consultants Medium +++++ Factors based on this can be 

adjusted during model calibration 

or to accommodate for 

scaling/corrosion. 

Equipment (Valve 

No., Types etc.) 

Construction Supervisor 

(Site Inspection) 

High +++++ Changes may be necessary if valve 

types differ from initial plans. 

Valve 

Characteristics 

(Sleeve) 

Manufacturer High +++++ - 

Valve 

Characteristics 

(Globe) 

Competitor Manufacturer  Medium +++ It would be prudent to update this 

if the information becomes 

available. 

BPT Control 

System 

EWS/Consultants High +++++ Can be adjusted for 

optimization/planning purposes. 

Reservoir Control 

Scheme 

Inferences Based on 

Visit to EWS Pinetown 

Control Centre 

High ++ Must be adjusted according to 

planned control scheme. 

Recommend increasing 

monitoring, automation and 

telemetry. 

Reservoir 

Characteristic 

Draws 

Calculations Based on 

Data Accumulated from 

Visit to EWS Pinetown 

Control Centre 

High ++ Must be accurately measured and 

updated. The system is not 

operational and accuracy may thus 

be compromised. 

Reservoir Mean 

Demands and 

Peak Factors 

EWS/Consultants High  +++++ Only amend if more accurate 

information is attained. 

Area 

Classifications for 

hydrograph 

development 

Based on observed 

patterns vs those from 

Stephenson (2012) 

Medium +++ Change if more accurate 

information is attained. 

Reservoir Diurnal 

Consumption 

patterns 

Calculated based on 

mean demands and peak 

factors, together with 

hydrographs from 

Stephenson (2012) and 

area classifications 

Medium +++ Only amend if necessary. 
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4.4 Data Assimilation & Data Handling 
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The collected data was then assimilated into individual formats that are easy to understand and 

interpret. This was done in order to simplify the construction of the model and to maintain a 

uniform level of simplicity with the model and associated information.  It also aids in the 

verification of the interpretation of given information through cross-checking of the 

reformatted data with the original source, or with the author of the data. This prudent measure 

in turn provides for an invaluable level of certainty throughout the model construction and 

allows for the avoidance of time-consuming errors. Another appealing advantage of this 

method is that it provides a basis for clear, uncluttered, graphics-based reporting. An example 

of the benefits of this step is the ‘flattening’ and linearization of the Western Aqueduct route 

(Figure 21) and supply points into the simple schematic that is used in the reporting of results 

(Figure 21). 

The data handling phase involved the extraction of relevant data, re-working of data into a 

meaningful form, extrapolating of data in order to meet requirements and the formation of 

reasonable assumptions. It is necessary to elucidate this aspect in order to ensure a proper 

understanding of the model operation through the understanding of its formative foundations.  

All physical data was collected from reputable handbooks and databases under the assumption 

of the prevailing atmospheric temperature of 25°C and a pressure of 1 atm. Water was also 

assumed to be incompressible. Table 6 presents a summary of the input data necessary to 

execute the model simulations. 
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Table 6 - Summary of the requisite input data for the model. 

4.4.1 Drawings and Schematics 

As per the skeletonization, the WA macroscopic route was mapped into a simple, flattened 

schematic, to which the pipe lengths and diameters were added (Figure 21). The pipe diameters 

were obtained from the Western Aqueduct layout drawing (Figure B1, Appendix B), while the 

list of pipe lengths were supplied separately (Table 3). 

The microscopic system, relating to the internal BPT structure, was also requested in the form 

of a technical drawing (Figure 17). This form of data presentation is desired as the level of 

Variable Description Input Units Designation  

Break Pressure Tanks 

Total Capacity 

(fixed volume) 

AD and WR BPTs m3 
ADV , WRV  

Surface Area m2 
ADA , WRA  

Control Philosophy In the form of a lookup table in (valve) positioner 

functions  

- - 

Reservoirs 

Total Capacity 

(fixed volume) 

For all reservoirs considered individually (all between 

AD and including NR5) 

m3 
iV (i=res #) 

Surface Area m2 (i=res #) 

Control Philosophy In the form upper and lower deadband limits  - - 

Characteristic 

draws 

For all reservoirs considered individually (all between 

AD and including NR5) 

3m

s
 

(i=res 

#) 

Pipes 

Length  For all pipe segments, on the trunk main, from the 

Umlaas Road reservoir to the WR BPT.  

m (i=pipe 

segment #) 

Diameter For all pipe segments, on the trunk main, from the 

Umlaas Road reservoir to the WR BPT. 

m (i=pipe 

segment #) 

Thickness For all pipe segments, on the trunk main, from the 

Umlaas Road reservoir to the WR BPT. 

m (i=pipe 

segment #) 

Physical Parameters 

Density of Water   

3

kg

m
 

 

Viscosity of Water Pa.s 
w  

Bulk Modulus of Water Pa 
wE  

Bulk Modulus of Pipe Materials Pa 
sE  

Poisson’s Ratio of Pipe Materials dimensionless 
s  

Globe valve characteristic curve coordinates coordinates  

Sleeve valve characteristic curve coordinates coordinates , yi ix  

iA

resiQ

il

id

iS

w

, yi ix
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certainty in the obtained data is increased. The technical drawing was thus simplified into a 

simple schematic of the pipe and valves arrangements (Figure 16). The internal structure of the 

BPTs is discussed in Section 3.3.1.2. The BPT volumes and heights, and the volumes and 

heights of the individual tank sections within the BPT were also computed and noted from 

these diagrams.  

The system topography was presented in the form of a longitudinal section diagram (elevation 

vs. distance) which also contained information regarding the placement of air valves and scour 

valves along the trunk-main pipeline route (Figure 14). This diagram was used in conjunction 

with results from the EPANET simulation, that were presented in the final amendment of the 

Western Aqueduct design report, to obtain the elevations of the system components (BPTs, 

supply etc.).  

Furthermore, according to the recommendation by Walski and Haestad Methods (2003), a site 

visit to the Ashley Drive construction site was conducted, in order to verify the obtained 

information. This confirmed that the number of valves, types of valves, BPT dimensions and 

the pipe sizes were being implemented according to the design specifications. This visit also 

served to deepen the understanding of the system and to ensure that the physical scale of the 

system was fully grasped.  

4.4.2 Documentation  

The Ashley Drive BPT (Western Aqueduct) design report was utilized in order to obtain a large 

proportion of the remaining data. This report contained a written description of the BPT 

systems, descriptions of its interactions and operations within the larger system, and provided 

reasons for the selection of the components of the system. This report also elucidated the details 

of the BPT control scheme in terms of its movement schedules and the regulated movement of 

the valves. The report also contained the details of the globe valves (size, commercial product 

name and manufacturer) which were used to obtain the valve characteristics.  

The sleeve valve characteristics that were provided in a graphical form within the report, in 

addition to the Bermad globe valve manufacturer-supplied characteristics, required curve 

fitting in order to render them useful to the model.  

Additional documentation that was generously supplied by EWS, included: 
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i. A complete database of all reservoirs in the eThekwini region. This exhaustive record 

contained amongst other information, the capacities, top water level, floor level and 

locations of the reservoirs. 

ii. Explicit timings for the regulated movements of the valve positions. The sleeve valves 

are set to move over their entire range (0% to 85%) in 5 minutes, while the globe valves 

average 7 minutes and 49 seconds over their entire range. 

iii. Pipe descriptions including the thickness and material for each individual pipe grouped 

by nominal diameter. 

iv. A reservoir datasheet that listed for each reservoir the average daily demand, the 

projected yearly growth rate and the peak factors (peak to mean ratio). 

4.4.3 Site Visits 

Reservoir information was obtained through a visit to the EWS Operations Centre, which 

provided direct, intimate access to the telemetry system. The information acquired included the 

individual reservoir control policies, the diurnal (consumer) demand profiles, and the 

‘characteristic flows’ of each reservoir. The characteristic flow of a reservoir is the mean inlet 

flow upon the toggling of the valve/pump in order to initiate filling of the reservoir. This is a 

reasonably good approximation to the actual operation of the reservoirs, although variations in 

the rate, based on the liquid height within the reservoir and the pressure within the trunk main 

at the supply node, are expected.  

The reservoir control policy could not be determined with certainty, due to the fact that no 

automatic controllers were in place. Human intervention was used in order to maintain 

reservoir levels within practical ranges, yet no set policy was followed. The lack of a stringent 

standard control policy was in part due to a severe drought that required a dynamic ‘balancing 

act’ in terms of level control throughout the complex distribution system. The control system 

was thus inferred to have a deadband control system with upper and lower limits of 80% and 

20% of the total reservoir height respectively. 

The lack of online measuring devices or access to temporary measuring devices also 

complicated the estimation of the individual reservoir characteristic flows. The telemetry 

system only provided time-series graphs of the reservoir level over a 24 -48 hour period (Figure 

B2, Appendix B). These graphs were collected for each reservoir that was to be connected to 
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the Western Aqueduct, and examined in order to estimate the required inlet flow rate. The 

following procedure was followed, and is illustrated in Figure B3, Appendix B: 

i. For every available pump toggle (ON) or control valve opening (Point A), the average 

previous negative gradient was extrapolated in the forward direction. This line 

represents the level decline at the previous draw rate for no inlet flow. (Point A) is 

detected by the sustained increase in the level of the reservoir. 

ii. The average gradient of the refill period, from (Point A) to the point of the pump toggle 

(OFF) or control valve closure (‘Point B) was then estimated.  

iii. The level difference ( h ) between the extrapolated negative and estimated positive 

gradient lines at the abscissa of Point B was measured to be the level difference over 

the refill period. This was then divided by the time ( t ) of the refill period (abscissa of 

Point B – abscissa of Point A) in order to obtain the level change per second of inflow. 

The floor area ( reservoirA ) of the reservoir was then used to calculate the average 

volumetric inlet rate for that period.  

iv. For reservoirs in series, the above procedure was executed on each reservoir, and the 

results were added. 

The results of this procedure for all contributing reservoirs are presented in  Table 7. It should 

be noted that the telemetry system provided records of existing operations (not WA) only. It is 

for this reason that the obtained values can only be used as a guideline until operational data is 

for the Western Aqueduct system is available. Furthermore, the estimates obtained from this 

procedure ( Table 7) resulted in a few instances of improbable results, when compared to 

average reservoir (consumer) demands. These anomalies could be attributed to the numerous 

instances of missing data or erroneous measurements. The anomalous results were thus ignored 

and an average of the factor of the plausible characteristic flows to their average demands, was 

computed in order to maintain uniformity. The estimated characteristic flow for each reservoir 

in the Western Aqueduct was thus concluded to be twice that of the yearly average flow. 
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 Table 7 - Table showing the results obtained during the process of calculating the 

characteristic flows of each reservoir 

 

Reservoir diurnal profiles: Due to the lack of measuring devices, a clear operating policy and 

the availability of telemetry records, diurnal profiles for each reservoir could not be directly 

attained. Furthermore, limited access to meter route readings, individual user billing 

information, dwellings classifications and amounts, and land-use classifications prevented the 

use of any of the preferred methods of profile development. Given the available information, 

the following procedure was developed in order to obtain an accurate demand profile for each 

reservoir: 

i. Normalized hydrographs for South African regions (urban, rural and industrial) were 

obtained from Stephenson (2012) (Figure A2, Figure A3 and Figure A4 in Appendix 

A, respectively). The specificity of the hydrographs to South African demographics and 

water value provided a greater degree of certainty to the hydrograph development 

process, 

ii. The reservoir level time-series graphs (Figure B2, Appendix B) were inspected to 

identify pertinent features that could aid in the classification of the areas served by the 

reservoir. This was preferred to the use of an area classification, as some reservoirs are 

supplied through other reservoirs. A list of pertinent features that correspond to the 

features observed in the hydrographs of Stephenson (2012) are presented in Table 8.  

Reservoir 

Reading 1 
(m/h) 

Readin
g 2 
(m/h) 

Readi
ng 3 
(m/h) 

Area 1 
(m2) 

Area 2 
(m2) 

Area 3 
(m2) 

Char Flow 
(m3/h) 

Ave Flow 
(m3/h) 

Aver
age 
facto
r 

Emberton 0,41 0,09   522,37 396,69   250,29 241,52 1,59 

 

 

 

 

 

Haygarth 
Rd 

0,02     647,50     13,26 476,41 

Tshelimnya
ma M1B  

0,68 0,75   590,55 590,55   844,18 571,69 

Abelia Rd  0,16 0,16   517,41 1021,11   250,97 282,54 

Jerome 
Drive  

0,74 0,18   626,17 527,28   559,87 273,42 

Wyebank  0,71     623,13     439,74 167,35 

Mount 
Moriah  

0,23     5435,79     1255,24 1039,81 

KwaDabeka 
1  

0,38 0,14   17,63 15,56   8,99 502,78 

Ntuzuma 5  0,56 0,43 0,24 1036,59 3913,38 3913,38 3194,62 2734,21 
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The reservoir diurnal profile was then formulated by stretching the hydrographs about the 

normalized mean to obtain agreement between the supplied peak factor and that of the 

hydrograph. The mean was then scaled to correspond the reservoir mean. The results of 

this process are shown in Figure 22. 

Table 8 – Observations from the reservoir draw pattern characterization process. These 

observations arise from the time-series graphs obtained for each reservoir from the 

control centre. 

 

Figure 22 - Results (diurnal pattern) of the reservoir demand profile development 

process. 
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Emberton Abelia Road Jerome drive Haygarth Rd Tshelmnyama

Wyebank Mt Moriah KwaDabeka 1 NR5

Reservoir Feature 1 Feature 2 Feature 3 Characterization 

Emberton Large draw - 5.30 Flat around 
Midnight 

Concave draw 
profile 

Upper income 

Abelia Road Sustained afternoon draw Reservoir fills late at night Industrial 

Jerome drive Early morning and 
evening draws 

Reservoir fills late at night Lower Income 

Tshelmnyama 
M1B 

Sustained afternoon draw Reservoir fills late at night Industrial 

Haygarth Rd  Large Early morning draw Evening draw Lower Income 

Wyebank Major afternoon draws steady draw through the day Industrial 

Mt Moriah Early morning and 
evening draws 

Reservoir fills late at night Lower Income 

KwaDabeka 1 Sustained afternoon draw Reservoir fills late at night Industrial 

Ntuzuma5 Large early morning draw, 
sustained 

Flat around Midnight Upper income 
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4.5 Model Construction   

1- Model Selection

2- Software selection

3 – Network 
Representation

 Project Definition
 Skeletonization

4 – Data Assimilation & 
Data Handling

 Drawings & 
Schematics

 Documentation

 Site Visits

5- Model Construction

 Variable Assignment 
& Data Input

 Regression
 Hydraulic 

Calculations

6-Model Calibration, 
Verification & 

Application

7- Analysis & Display of 
Results 

The network representation was built upon the existing skeletonized system. The link-node 

analysis method outline in Section 4.3 was followed in order to lay the foundations of a 

working, accurate mathematical representation of the physical system. All pipes that are 

separated by a node, as well as each node itself, were individually named in order to avoid 

confusion in coding and in the reporting of the data. The operational flowchart of the model is 

presented in Figure 23. 

4.5.1 Data Preparation 

In order to ensure conformity of the program to both the physical system, and user 

requirements, an input configuration module is provided. The configuration module consists 

of a time-loop configuration block and a physical parameter block.  

4.5.1.1 Time-loop configuration 

 The code is commenced with the time loop configuration block. This block accepts as inputs; 

the total required time for the EPS, the simulation start time ( ,
60

mm
hh ) and the length of the 

time increments (in seconds) and the year for which results are required. The program is 

configured to calculate the total number of increments required, which is then used in 

conjunction with the increment length to set the length of the time loop, and subsequently to 

initialize the vectors.  

4.5.1.2 Physical data and parameters and initial conditions 

The physical parameters required to execute the hydraulic calculations, is accommodated 

within the physical parameter block. The initial conditions for the system components, that is 

required to initiate the simulation sequence, are also input into this block. The requisite input 

variables are summarized in Table 6. 
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The a  parameter is solely dependent on the physical parameters of the system. It is calculated 

using Equation [19] and the required physical parameters, for use within the Joukowsky 

Equation (1898) (Equation [14]). 

  
2

1

(1 )i p

F R

a
d

E E s

 


  




 [19] 

4.5.1.3 Initialization 

Vector initializations (creation of arrays of zeros) are aimed at increasing the computational 

speed of the program. The pre-allocation of the vectors allows for the circumvention of a vector 

size increase with every (time) step ahead in the approaching loop. 
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vnum=vnum+1

Start

Initialization:Initial Conditions
-Set valve positions
- Set tank initial volumes

Initialization:Time Config
-Set start time
- Set timestep length
-Set simulation duration
-set timeloop counter (t) to 0

Initialization:Data Input
Qchar,ρ,µ,l,dh, E, etc

Co-ordinates for gv/sv plots

Find number of increments (tinc)
Initialize vectors for speed

Least sqaures linear regression
For vnum=1:12

No
Coefficients for:

- 10 sleeve valve plots
-1 globe valve plotVnum=12

Yes

Fitting of k parameter to EPANET results

Set 24h time

For t=1:tinc 

Set current reservoir demand 

Integrate BPT & reservoir volumes by Euler 
Method

Set reservoir draws (toggle) from trunk main 
(yes/no)

Set BPT globe & sleeve valve positions 
(control philosophy)

Find cumulative globe valve resistance (AD+WR)

For pm=1:5
For sv=1:6

Interpolate to get flow for sv valve position at 
point pm

pm=5
No

Yes

sv=6
No

Yes

5 co-ordinate pairs for sv

Least sqaures linear regression

pm=pm+1

sv=sv+1
Coefficients for correlation of 

Q vs. P plots for:
-3xAD Sleeve vales
-3xWR Sleeve vales

Set tolerance for AD & WR hydraulic loops(ɛ )
Reset count parameters (j,h) for loops

t=1
No Yes

Initial guess PAD
intPAD

int(t-1)=PAD
int(t-1)

Calculate flow through globe valves and line 
(Qa,j

AD) & flow through sleeve valves (Qb,j
AD) for 

PAD
int+PAD

int2

Get PAD
int2. α% greater than PAD

int

Calculate minimization function for Qa,j
AD    (FminA)  

& Qb,j
AD  (FminB)

FminA<ɛ No

Yes

Get next-guess PAD
int by 

Newton-Raphson Method

t=1
No Yes

Initial guess QWR
jwQWR

jw=QWR
jw(t-1)

Calculate friction factor for each line 

(Colebrook-White eq.)

Find flows in each line leading to WR from AD by 

back-substitution

Calculate pressure drop in each line (Darcy-
Weisbach equation) and total pressure drop

FWR
minA<ɛ 

No

Yes

Get next-guess QWR
jw by 

Newton-Raphson 
Method

Calculate flows in lines leading from AD to WR 

Calculate waterhammer overpressures by 
Joukowsky equation and steel pipe analogy 

t=tinc 
No

Yes

Store data in Excel (xlswrite1)

Plot graphs

t=t+1

No

t=1
Yes

Calculate cumulative globe valve pressure drop + 
total line pressure losses (Δpsv1)

Calculate sleeve valve pressure drop  (Δpsv2)

Calculate Calculate FminwA & FminwB 

Get QWR
jw2 αw% greater than QWR

jw

vnum=vnum+1

Start

Initialization:Initial Conditions
-Set valve positions
- Set tank initial volumes

Initialization:Time Config
-Set start time
- Set timestep length
-Set simulation duration
-set timeloop counter (t) to 0

Initialization:Data Input
Qchar,ρ,µ,l,dh, E, etc

Co-ordinates for gv/sv plots

Find number of increments (tinc)
Initialize vectors for speed

Least sqaures linear regression
For vnum=1:12

No
Coefficients for:

- 10 sleeve valve plots
-1 globe valve plotVnum=12

Yes

Fitting of k parameter to EPANET results

Set 24h time

For t=1:tinc 

Set current reservoir demand 

Integrate BPT & reservoir volumes by Euler 
Method

Set reservoir draws (toggle) from trunk main 
(yes/no)

Set BPT globe & sleeve valve positions 
(control philosophy) – restricted movement 

speed

Find cumulative globe valve resistance (AD+WR)

For pm=1:5
For sv=1:6

Interpolate to get flow for sv valve position at 
point pm

pm=5
No

Yes

sv=6
No

Yes

5 co-ordinate pairs for sv

Least sqaures linear regression

pm=pm+1

sv=sv+1
Coefficients for correlation of 

Q vs. P plots for:
-3xAD Sleeve vales
-3xWR Sleeve vales

Set tolerance for AD & WR hydraulic loops(ɛ )
Reset count parameters (j,h) for loops

t=1
No Yes

Initial guess PAD
intPAD

int(t-1)=PAD
int(t-1)

Calculate flow through globe valves and line 
(Qa,j

AD) & flow through sleeve valves (Qb,j
AD) for 

PAD
int+PAD

int2

Get PAD
int2. α% greater than PAD

int

Calculate minimization function for Qa,j
AD    (FminA)  

& Qb,j
AD  (FminB)

FminA<ɛ No

Yes

Get next-guess PAD
int by 

Newton-Raphson Method

t=1
No Yes

Initial guess PWR
intPWR

int(t-1)=PWR
int(t-1)

Calculate flow through globe valves and line 
(Qa,j

WR) & flow through sleeve valves (Qb,j
WR) for 

PWR
int+PWR

int2

Get PWR
int2. α% greater than PWR

int

Calculate minimization function for Qa,j
WR    

(FWR
minA)  & Qb,j

WR  (FWR
minB)

FWR
minA<ɛ No

Yes

Get next-guess PWR
int by 

Newton-Raphson 
Method

Calculate flows in lines leading from AD to WR 

Calculate waterhammer overpressures by 
Joukowsky equation and steel pipe analogy 

t=tinc 
No

Yes

Store data in Excel (xlswrite1)

Plot graphs

t=t+1

No

t=1
Yes

 

Figure 23 - Flowchart of the program operation, with the Darcy-Weisbach Equation (left) and the regression-type calculation (right). 
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4.5.2 Regression 

4.5.2.1 Valve characteristics 

In order to obtain a mathematical representation of the relationship between flow and pressure 

drop across the valves, for use within the hydraulic calculations, a regression routine is 

employed. The regression routine, which is accessible from the main code, generates 

parameters of an equation of the relationship describing the co-ordinates of the valve’s flow     

( kF ) vs. pressure ( svkP ) plots. The sleeve valve characteristic data was obtainable only in the 

graphical form presented in Figure 24. 

k=1

Z=4

Z=1

k=2

k=3

k=4

k=5

k=6

k=10

k=9

k=8

k=7

Z=2
Z=3 Z=4

X3

Y3

 

Figure 24 - BPT sleeve valve characteristics - flowrate vs. nett inlet head for deciles of the 

valve position (Fischer, 2014). 

The regression for each of the ten sleeve valve flow characteristic (decile) plots, is achieved 

through the use of an external function call. This function is a matrix (linear) regression 

function that uses the least-squared error technique to obtain the best fit to the curves presented 

in . The function accepts two corresponding ordinate and abscissa vectors, and returns the 

vector of coefficients (  ) for the desired mathematical function, and thus must be called each 

time a regression is conducted. The least squares, matrix (linear) regression solution, for an 

equation described by Equation [20], is represented by Equation [21] 
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  Y X   [20] 

  
1( '.X ). '.X X Y   [21] 

The format of the abscissa vector (𝑋), the ordinate vector (𝑌) and the equations coefficients     

(  ) are shown below as Equation [22], Equation [23] & Equation [24] respectively. It should 

be noted that 𝑋 and 𝑌 may vary in size due to the amount of co-ordinate pairs used (z), yet   

will remain constant, as the regression is for a single curve (k). 𝑧 is the number of co-ordinate 

pairs used within the regression.  

  

1 1
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 [24] 

The presented function returns two coefficients ( g , h ) based on an equation that sequentially 

includes a linear and a square root term. The equation selected for the characterisation of the 

𝑘𝑡ℎposition of the sleeve valve flow characteristic plot is thus: 

  k svk svkF gP h P   [25] 

 It was decided, after a rigorous analysis of the trade-off between descriptive accuracy, and 

code and computational complexity, that this equation form describes the valve plots with 

sufficient accuracy. The marginal increase in accuracy for the inclusion of the quadratic and 

constant term (𝑆𝑆𝐸 = 0.12, 𝑅2 = 9.16) as opposed to the accuracy for the simpler linear and 

square root function ( 𝑆𝑆𝐸 = 0.43 , 𝑅2 = 9.17 ), was deemed to be negligible when the 

accompanying drastic increase in computational complexity was considered. The inclusion of 

the quadratic term necessitates the inclusion of an added iterative loop that must be 

independently solved within the Darcy-Weisbach (1845) solution algorithm, as an explicit 
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solution is impossible. Furthermore, this added iterative loop was found to be unstable and 

resulted in a radical increase (~60 sec to ~12 214 sec) in the code execution time. The program 

that incorporates the quadratic and square root regression is however provided as an 

accompanying resource. The globe valve characteristics for an equivalent Bermad model, was 

regressed to a quadratic equation by implementing a simple modification to the above code. 

This quadratic regression function is also provided as an addendum. 

An added regression sequence is also employed after the positioning of the valves in each time-

step. The regression function is re-used to obtain a mathematical representation of the sleeve 

valves at the specified position. The Y -vector for the re-regression step is obtained through 

linear interpolation between the relevant (initially) regressed curves. This is done by placing 

the valve position between two predefined curves, and subsequently carrying out a linear 

interpolation at each required abscissa. 

*The usage of a matrix necessitated the division of the pressure by a factor of 102 in order to 

circumvent the formation of a near-singular matrix.  

4.5.2.2 k-value regression  

Since the Midmar Dam Water Works supply system’s behaviour was deemed to be outside of 

the scope of this study, the skeletonization incorporated a lumped demand term midway along 

the route to Ashley Drive. Additionally the representation of a non-operational physical system 

called for the use of a regression model-type nonlinear equation, since calibration to the 

physical system cannot be achieved. This limit the achievable accuracy when using the 

simplified and complete hydraulic models. The use of a regression model would furthermore 

simplify calibration and allow for better correspondence to the EPANET design model. This 

would also account for all pipe fittings (bends, air valves, scour valves, butterfly valves etc.) 

since their resistance would already be incorporated into the (design) lumped parameter. As 

such, the system pressure/flow relationship was regressed according to Equation [26] to the 

EPANET model, to obtain a value for k . 

  
2

linep kQ   [26] 

In order to mitigate the concerns expressed in Mays (2000) regarding the accuracy of a 

regression model outside of its simulated (input) range, an average of four k values was 

obtained, incorporating those for peak factors of 1.2  and 1.5  multiples of the flow. In 

calculating the k , the change in diameter (between 1 400 mm and 1 600 mm) and flowrate 
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encountered in the pipeline from Umlaas Road to Ashley Drive had to be accounted for. This 

was achieved through the relationship between the diameter and pressure drop, obtainable from 

the Darcy-Weisbach (1845) equation (Equation [10]).  The calculation to obtain the k is 

presented below; 

Simple mathematical manipulations of Equation [10] are used to incorporate the pipe 

diameter into the Darcy-Weisbach equation (1845), yielding Equation [27]. 

 
2

2 5

8

h

Q
p l

d




     [27] 

It is thus established that p  has a relationship to the pipe hydraulic diameter (
5

hd ) 

that is described by 
5

1

h

p
d

  ,. Furthermore, the initial factor shown in Equation [27] 

can be equated to an adapted xk factor to obtain the following, simplified form of the 

Darcy-Weisbach equation (1845) – Equation [28]. 

 
2

5x

h

Q
p k l

d
     [28] 

The relationship between the xk factor for the 1 400 mm ( 1400k ) and 1600 mm ( 1600k ) 

(Equation [29]) allows the exclusive use of the 1400k , which therefore also applies to 

the pipes downstream of the AD BPT.  

 
51600

1400 5
1.6

1.4

k
k    [29] 

The final form of the regression equation, that accounts for the lumped halfway 

(fractional) offtake ( ,o yearq ) and the change, from and to the 1 400 mm diameter pipe 

follows from Equation [28] and Equation [29], and is thus presented as Equation [30]

. 

 
5 5
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4.5.3 Time-based hydraulic calculations 

4.5.3.1 Time loop 

The time loop is commenced with the use of a for loop, with a specified termination length, 

equal to the total number of increments that is calculated from the user inputs into the time loop 

configuration block. The time is initially set to the user-specified starting time. Each subsequent 

progression through the loop causes an incremental move ahead in time, equal to the user-

specified time increment length  

4.5.3.2 Reservoir consumer demands and inlet draws 

Using the calculated time, and user-specified year, an external function delivers the consumer 

demand on each reservoir at the specified time. This function is configured with the format of 

a time-based lookup table, which was generated according to the procedure outlined in 

Section 4.4.3. An allowance for the projected yearly demand growth for each reservoir is 

included within the computation.  

The reservoir draws from the trunk mains, at the current time-step ( time t ), are determined 

through the use of an external function that accepts as inputs; the current reservoir levels, the 

lower and upper reservoir (deadband) control limits and the previous state of the reservoir draw 

( ( )act t t   ), all in vector form. The function compares the current level of each reservoir to 

its upper and lower control limits, and enacts adjustments to the output vector only when these 

limits are transgressed (deadband' control philosophy). The adjustments to the output vector     

( ( )act t ) are in the form of a binary toggle (1=draw, 0=no draw). No control action is taken 

when the reservoir levels are within the specified deadband limits, and the result is thus the 

value of the previous entry.  

The function is built in a generic format, and was thus used in its identical form for both sets 

of reservoirs (between Ashley Drive and Wyebank Road BPTs and after Wyebank Road BPT). 

The reservoirs are divided into distinct sets in order to facilitate their independence within the 

simulation phase, particularly when their control systems are overridden during stress tests. 

4.5.3.3 Volume integration 

The initial ( 0time  ) volumes of the BPTs together with those for the reservoirs and the initial 

conditions of the valves are set within the initial conditions block. For all other time                         

( 0time  ) the volumes of the BPTs and reservoirs are calculated using the Euler Method                
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(Equation [3]), which takes on the form of Equation [31] for the reservoirs and Equation [32] 

for the BPTs. The Euler Method was accepted as sufficiently accurate, without hesitation, due 

to the assurance provided by Mays (2000), as detailed in Section 2.4.1.1. 

All reservoir volumes are thus integrated through an external function call that simultaneously 

integrates for each reservoir. The BPT and reservoir volumes are subsequently divided by their 

respective surface areas, as per Equation [34] , in order to calculate the current level of water 

within the tank. The reservoir integration function provides for a saturation volume to be 

reached in order to represent reservoir overflow conditions. The same is not provided for the 

BPTs, as it would affect the analysis of the efficacy of the control system and its ability to 

manage large flows. 
act is the activator binary variable that toggles the inflow to the reservoir 

based on the reservoir level.  

  ( ) ( ) ( ( ) (t ))res res in outV t V t t t Q t t Q t           [31] 

  ( ) ( ) ( ( ) (t ))BPT BPT in outV t V t t t Q t t Q t           [32] 

  ( ) ( ) ( ( ) (t ))res res char act demandV t V t t t Q t t Q t            [33] 

  
( )

( )
( )

res
res

res

V t
h t

A t
  [34] 

4.5.3.3.a Level based decisions 

The volume integration calculations enables the control mechanisms to reach a preferred 

valve/pump setting for the time-step ( time t ). The positioning functions (globe valves and 

sleeve valves independently) utilize the BPT levels at time t , and the control system settings 

(Figure 18) that are located within their respective external functions in the form of a lookup 

table. The lookup table provides the target valve positions ( px ) for the current level, to which 

the valve position must move, at its regulated rate. This ramped (regulated) valve movement is 

built into the external function through a calculation (Equation [35]) that involves the following 

inputs: the desired movement limit (fraction of stroke - psm ), the length of the interval for 

which this movement is specified ( pst ) and the duration of each time step ( t ). 

  ps

t

ps

m
m t

t
    [35] 
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The calculated movement ( tm ) is then allowed for, from the previous valve position (at 

1time t  ). The ramped movement of the valves however, necessitates the following logic in 

order to account for a previous valve position ( t tx  ) that would not permit the movement at 

the allowed rate (i.e. a movement at the calculated rate ( tm ) would cause the valve movement 

to exceed its target position ( px )). 

if t t px x   & t t t px m x    

 t t t tx x m    

elseif t t px x   & t t t px m x    

 t t t tx x m    

else t px x  

Although the control settings for the Ashley Drive and Wyebank Road BPTs are envisioned to 

be identical, provision is made for alterations in either control system by utilizing separate 

external functions. Control system settings may require alteration due to interaction between 

the two BPTs that may prove to be particularly burdensome on the Ashley Drive BPT, or if 

new valve settings are determined by optimization. 

The program incorporates a data stack for the BPT control valve positions. This is included in 

order to emulate the workings of a real-world control model, where data cannot be indefinitely 

stored. The control valve position stack contains two levels of data; the current valve positions 

( time t ) in row 2, and the previous positions ( 1time t  ) in row 1. The valve positions at 

1time t   are required in order to regulate the movement of the valves as required by the 

control system.  
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4.5.3.4 Calculation of hydraulic parameters 
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valves
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Figure 25 - Demonstration of the transformation of the individual flow factors into 

lumped terms to solve the hydraulic equations. 

The combined effect of the globe valves (for each BPT) is computed through the addition of 

the product of the Kv  and ( )f x terms for all three valves, as presented in Equation [36]. The 

Kv  value is constant, but ( )f x is dependent on the current valve position, and is thus 

calculated through the regressed parameters (Section 4.5.2). 

  
3

,

1

( (x))gv BPT l

l

R Kv f


   [36] 

The format of the data supplied for the sleeve valves (Figure 24) however, required an 

additional processing step prior to this addition step. The additional processing involves the 

mentioned linear interpolation (Section 4.5.2.1) of the flowrate (ordinate), for the given valve 

position, from the nearest supplied valve position curve above and below the valve position at 

time t . The interpolation is carried out through an external function that contains a lookup 

table of data coordinates for each (𝑘𝑡ℎ) sleeve valve flow vs head curves. 

The interpolation function utilizes the current valve position ( tx ) and a logical statement to 

place the current valve position between the two closest valve positions that correspond to the 

supplied characteristic curves (deciles). The coefficients for these two valve positions, that are 

obtained from the previous regression (Section 4.5.2.1), are used to find the flows (
,

|
sv kspecP upperF  

& 
,

|
sv kspecP lowerF ) at the specified pressure ( svP ). The interpolation is subsequently carried 

according to Equation [37]. 
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 [37] 

Re-regression (see Section 4.5.2.1) is then conducted using the results of the linear 

interpolation, in order to obtain a usable analytical equation that could be summed to obtain 

the combined effect of the sleeve valves, without compromising the accuracy of the model. 

4.5.3.5 Hydraulic Loop- AD BPT 

The attainment of the collective characteristics of each group of valves in series at time t

allows for the commencement of the Newton-Raphson Method iteration loop. This method is 

used to iteratively solve for the flow through the AD BPT system, which is dependent on the 

interplay between the available head, the pipeline frictional effects and the resistance of the 

valves. The problem was constructed to manipulate a variable ( Q ) other than that utilised in 

its convergence criterion ( P ). This was done in order to negate the interference of the 

relaxation parameter ( ) on the convergence criterion.  
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Figure 26 - Visualization of the parameters used in the hydraulic calculations for the AD 

BPT. 

4.5.3.5.a Hydraulic calculations – k-value 

Objective: The objective of the hydraulic solution loop is to determine the flowrate that is 

permitted through the BPT system at the current valve positions. The flowrate through the 

system is governed by three, interacting resistances (the line resistance, globe valves resistance 

and sleeve valve resistance). The attainment of the pressure between the globe valves and 

sleeve valves ( int ADP ) will allow for the flowrate upstream and downstream of this point 

(Point Ao) to be calculated explicitly. The hydraulic solution loop thus utilises the Newton-

Raphson method to equate the flows upstream and downstream of Point Ao, by adjusting the 
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intermediate pressure ( int ADP ). Figure 26 is a visualization of the parameters used within the 

hydraulic loop. 

The procedure is initiated by estimating the pressure (
0int |AD

j jP 
) loss through sleeve valves 

at time t . 𝑗 is the Newton-Raphson iteration number. This in turn enables the calculation of 

a combined pressure loss (
,A jP ) for the line (

linejp ) and globe valves (
gvjp ) corresponding 

to the initial guess (Equation [38] ). The unit of measurement for all pressure terms is meters 

of water. 

  
, 0( )A j linej gvj jP p p       [38] 

This combined pressure loss is then calculated, according to Equation [39] by subtracting the 

initial guess for the sleeve valve pressure loss, from the available head. The available head is 

the total static head ( AD

staticP ) less the level of liquid in the BPT ( AD

jh ) (BPT is bottom-fed). 

  
, intAD AD AD

A j static j jP P h P     [39] 

These initial pressure loss guesses are then used to calculate the corresponding flow through 

the line and globe valves (
, 0|AD

A j jQ 
), and through the sleeve valves (

B, 0|AD

j jQ 
). Equation [40] 

presents the relationship between the combined line and globe valve pressure loss and the 

flowrate through the system. Equation [41] is its explicit solution for the flowrate through the 

system.  

  
2

, ,

,

1
( ) ( )AD

A j A j

gv AD

P Q k
R

     [40] 

  ,

int

1

AD AD AD

static j jAD

A j

gv

P h P
Q

k
R

 




 [41] 

The flow through sleeve valve 𝑖  (
Bu,

AD

jQ ) is obtained from Equation [42] which utilises the 

coefficients from the regression carried out in Section 4.5.2.1 for the current valve positions     

(
tx ). 

  Bu, 1 2

int int
( )

100 100

j jAD

j u u

P P
Q v v   [42] 
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The flowrate through each sleeve valve 𝑖, is then summed (Equation [43]) to obtain the total 

flowrate through the parallel configuration of the valves (
B,

AD

jQ ). 

  
3

B, Bu,

1

AD AD

j j

u

Q Q


   [43] 

4.5.3.5.b Newton Raphson solution  

The minimization function for the Newton-Raphson Method ( f( int )ADP ) is shown in 

Equation [44] 

  
Bf( int ) ( )AD AD AD

A jP Q Q   [44] 

According to the Newton-Raphson method, the corresponding next guess is calculated by 

Equation [45]. j is the iteration number, which is 0 for the initial guess.  

   1

f( int )
int int

f( int )
|

int
j

AD
AD AD

j j AD

Pi

P
P P

P

P

  




 [45] 

The procedure of re-generating a next-guess pressure is repeated until the minimization 

function is within a specified tolerance (  ). A tolerance of 1x10-3 

3m

s
 was deemed to be 

suitable as a convergence criterion for the model. The relaxation parameter was set to 5x10-3 

in order to avoid observed ‘sawtooth’ overshooting of the root, thus speeding up convergence. 

The gradient 
f( int )ADP

P




was calculated through the simultaneous evaluation of the flows at a 

pressure α% greater than int AD

jP , according to Equation [46]. The evaluation parameter (α) is 

included as a user-adjustable variable.  

  A Bf( int ) f( int )f( int )
| |

int int int

AD ADAD

j j

A B

P PP

P P P




 
 [46] 

In order to optimize the algorithm for speed, the converged (final) 
, 1int |j j j t tP   

at the previous 

timestep ( 1time t  ) is used as the initial guess (
0,int |j j t tP  

) at  the current timestep                        

( time t ) for all 1t  , as this is expected to be a close approximation, particularly at small 

time increments.  
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4.5.3.6 Hydraulic Loop- WR BPT 

The Wyebank Drive BPT solution loop, in the regression model form, follows much the same 

format as that of the Ashley Drive BPT. The primary difference is the scaling of the per-metre 

k value, which is achieved by the multiplication of the length of the pipe segment being 

considered, according to Equation [28]. Figure 27 is a visualization of the parameters used 

within the hydraulic loop. 

 

To BPT compartments

From AD BPT

Line 
resistance

Line resistance and 3x 
globe valve lumpe d 

To BPT compartments

From AD BPT

3x s leeve valve 

resistance

Pressure available at 

entrance to WR  BPT 

WR

kp

WR

gvp

1svp

WR WR

static tP h

 

Figure 27 - Visualization of the parameters used in the hydraulic calculations for the AD 

BPT. 

The inclusion of the Darcy-Weisbach (1845) equation however, necessitates a complete 

overhaul of the structure of the loop. This loop commences with an initial guess ( 0t  ) of the 

flow through the network (
0|

WR

j jQ 
) that is also equated to the previous converged flow value 

, 1|WR

j j j t tQ   
 for every subsequent time-step ( 1t  ). The flowrate through each pipe run, from 

the Ashley Drive BPT to the Wyebank Road BPT is then computed through a series of 

backward-substitution type calculations.  

4.5.3.6.a Hydraulic calculations (Darcy-Weisbach method) 

Objective: The objective of the hydraulic solution loop is to determine the flowrate that is 

permitted through the BPT system at the current valve positions. The flowrate through the 

system is governed by three, interacting resistances (the line resistance, globe valves resistance 

and sleeve valve resistance). The Darcy-Weisbach equation introduces an added complexity, 

due to the equation being implicit with the flowrate. The solution procedure is thus amended 

to adjust the flowrate based upon the Newton-Raphson technique through the calculated 
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pressure losses. The line and globe valve pressure losses are all determinable with a flowrate 

estimate. 

The initial guess of flow through the WR BPT (
0|

WR

j jQ 
) allows for the flow within each 

successive upstream line (𝑘 − 1) leading to the WR BPT (
1

WR

j kQ 
) to be calculated, through 

the knowledge of the current offtakes (
,rescharQ  - Section 4.5.3.2) according to Equation [47]  

  1 ,res

1

[ ( ) ]
y

WR WR

j k j k act char y

y

Q Q t Q



    [47] 

The dimensionless friction factor (  ) is then calculated through an external function call that 

solves the Colebrook-White equation (Equation [12]) for the friction factor, through successive 

substitution, according to Equation [48]. 

  
2

,z

, 1

1

/ 2.51
2 log( )

3.7 Re

k
k

k k z

f
e D

f 



 

 [48] 

The friction factor, together with the other requisite physical parameters are then utilised within 

a Darcy-Weisbach (1845) (Equation [10]) external function, to calculate the pressure drop 

kp  for each pipe segment ( k ). 

  
5

0

WR

k k

k

p p


    [49] 

The sum of the pressure drops ( WR

kp ) is then calculated through Equation [49], and 

subsequently subtracted from the total available static head in order to calculate the pressure 

available upstream of the globe valves. The total pressure drop across the three globe valves (

WR

gvp ) is obtained through Equation [50] which requires the regressed valve characteristic 

coefficients (Section 4.5.2) and the flowrate estimate (
0|

WR

j jQ 
). 

  2

,

( )

WR

jWR

gv

gv WR

Q
p

R
   [50] 

This enables the calculation of the estimated pressure drop across the sleeve valves (
1svp ) 

through Equation [51].  

  
1

WR WR WR WR

sv static t k gvp P h p p        [51] 
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Using the same flowrate estimate (
0|

WR

j jQ 
), the pressure drop 

2svp  through the set of sleeve 

valves can be calculated from the regressed equations (Section 4.5.2.1) and the quadratic 

equation. Equation [52] represents the explicit solution for the total flow through the sleeve 

valves ( WR

SVQ ) by summing the expressions for the individual flowrates through each valve in 

the parallel arrangement. 

  2 2
11 12 13 21 22 23( ) ( )

100 100

WR sv sv
SV

p p
Q v v v v v v

 
         [52] 

Simple mathematical manipulations of Equation [52], yields the quadratic expression shown 

in Equation [53].  

  2 211 12 13 21 22 23
2 2

( )
0 ( )

100 100

WR

sv sv SV

v v v v v v
p p Q

   
      [53] 

The quadratic formula is then used to provide an explicit solution (Equation [54]) for the 

pressure drop through the sleeve valve arrangement (
2svp ). The subtraction of the square root 

term was found to produce the only viable root over the entire plausible range of flows. 

  

2

221 22 23 21 22 23 11 12 13

2
11 12 13

( ) ( )
4 ( )

100 100 100

2
100

WR

SV

sv

v v v v v v v v v
Q

p
v v v

     
    

 
 



 [54] 

The usage of the marginally more accurate quadratic-root regression equation for the sleeve 

valve flow-pressure relationship requires the inclusion of yet another inner loop, which was 

found to be unstable, particularly at low flowrates. The extra loop is required for root-finding 

purposes, as the root cannot be found directly. The inclusion of this loop drastically increased 

the computation time, regardless of the root-finding algorithm or relaxation parameter used. 

The linear-root equation however, possesses an explicit solution that takes the form of the 

quadratic equation, whose non-complex solution over the entire pressure/flow range, 

corresponds to the subtraction of the square root term.  

4.5.3.6.b Newton Raphson minimisation  

The minimization function for this loop is constructed in terms of pressure in order to 

circumvent the aforementioned interference of the relaxation parameter in the convergence 

criteria. The minimization function ( ( )WRf Q ) is thus constructed as Equation [55]. 
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2 1( ) | |WR

sv sv jf Q p p     [55] 

According to the Newton-Raphson method, the corresponding next guess is calculated by 

  
1

min

( )

|
( )

j

WR
WR WR

j j j j

WR

Qw

f Q
Q Q

F

f Q

  




 [56] 

where j is the iteration number, which is 0 for the initial guess. The procedure of re-generating 

a next-guess pressure is repeated until the minimization function is within a specified tolerance 

( ). The tolerance and relaxation parameter were maintained at the values specified for the 

AD BPT solution, and the gradient evaluations were conducted at the same (adjustable) 

percentage distance.  

After each Newton Raphson solution convergence, the pertinent variables are stored into 

separate vectors, in order to avail them for storage and further calculations. The iteration 

number parameter j is then reset to zero, and all the variable vectors are re-used for the next 

time-step.  

4.5.3.7 Fluid transient analyses 

The next section of the program incorporates the water hammer calculations that are described 

in Section 2.4.3. The inclusion of both calculations to estimate the water hammer overpressure 

is discussed in Section 2.4.3. The Joukowsky overpressure estimation simplifies to 

Equation [57] and the steel pipe analogy simplifies to Equation.[58] 
upl is the length of the 

pipeline upstream to the valve and BPT

jQ  is the converged flow rate from the BPT hydraulic 

loop, at the indicated time step. 
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4.6 Analysis and Display of Results 

1- Model Selection

2- Software selection

3 – Network 
Representation

 Project Definition
 Skeletonization

4 – Data Assimilation & 
Data Handling

 Drawings & 
Schematics

 Documentation

 Site Visits

5- Model Construction

 Variable Assignment 
& Data Input

 Regression
 Hydraulic 

Calculations

6-Model Calibration, 
Verification & 

Application

7- Analysis & Display 
of Results 

A plotting facility is provided in order to graphically display the calculated parameters against 

the time, in order to display the large volumes of data in a concise manner. These plots are 

intended to expedite decision-making processes and allow for the easy identification of system 

vulnerabilities. The selection of ordinate-abscissa pairs was scrupulously carried out in order 

to highlight interactions between system components. The final portion of the program uses a 

modified version of the inbuilt ‘xlswrite.m’ function in order to drastically decrease the 

execution-time of the program. The function script was obtained from the Mathworks online 

forum (Swartz, 2006). The storage utility was deemed to be of utmost importance in the field-

use of the program, as each re-run of the program overwrites any past data generated. Microsoft 

Excel © was selected as the spreadsheet facility of choice, due to its widespread acceptance. A 

template .xlsx file, which is provided with the code, contains readymade data headers and plots 

as shown in Figure C1, Appendix C.  

4.7 Model Calibration, Verification & Application 

1- Model Selection

2- Software selection

3 – Network 
Representation

 Project Definition
 Skeletonization

4 – Data Assimilation & 
Data Handling

 Drawings & 
Schematics

 Documentation

 Site Visits

5- Model Construction

 Variable Assignment 
& Data Input

 Regression
 Hydraulic 

Calculations

6-Model Calibration, 
Verification & 

Application

7- Analysis & Display of 
Results 

Model calibration could not be achieved as the Western Aqueduct is not currently operational. 

The regression model-type calculations however, do provide a welcome degree of certainty 

with regards to the correspondence of the model results to the EPANET simulation.  

Model verification was achieved through the use of numerous localized mass balances and an 

overall mass balance. The balancing of the mass balance itself provides an assurance of the 
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veracity of the computational elements of the model. Furthermore, simplified, disentangled 

scenarios were developed in order to assess the correspondence of the behaviour of the system 

to anticipated behaviour, and to ensure that the model is accurate.  

Normal Operation Stress tests

Original control Revised Control (2016)

Special Events:

• Compartment maintenance

• Sleeve valve maintenance

• Electricity outages

7,5 m

7,0 m

6,5 m

BPT level 

SV: 0,25|0|0

GV: 0,5|1|1

SV: 0,25|0,25|0

GV: 1|1|1

SV: 25|0|0

GV: 0|0,5|1
4,5 m

3,5 m

Deadband zone
No valve movements

BPT level 

Longevity

2036
400 Mℓ/day

AD BPT

2106
869 Mℓ/day

2036
400 Mℓ/day

WR BPT

2152
1625 Mℓ/day

Valve rates 

restricted

Time-driven 
sequence

Time-driven 
sequence

 

Figure 28 - Visusal presentation of the factors involved within the conception of the 

simulation test scenarios. 

The model application involved the conception and execution of multiple scenarios in order to 

assess the system performance and behaviours under pre-selected conditions. Both normal 

operational tests and stress-tests were conducted on the system. Normal operation involves the 

consumer usage draws at their estimated draw rates and schedules, while the reservoir control 

philosophy governs the reservoir draws from the trunk mains. Stress-tests however involve the 

overriding of the reservoir control system to manually set the binary toggle for reservoir draws 

from the trunk mains, thus ignoring the breaching of the high or low deadband limits within 

each reservoir. Reservoirs were set to draw either individually or simultaneously, as presented 

in Table 10. These operating conditions were then permutated in succession with the original 

control philosophy (Control 1.0) and the revised control strategy (Control 2.0). Special events, 

which bore much significance within the conceptual stages of the Western Aqueduct design, 

such as BPT compartment maintenance, sleeve valve maintenance and operation under power 

outage conditions, were also tested for each control philosophy. Longevity tests included 

simulations over much longer time-periods. These tests thus negated the effects of the control 

system, and were used to evaluate the ability of the Western Aqueduct to be able to supply 
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growing (y/y increase) consumer demands, based upon upstream heads, and the line resistance. 

Figure 28 graphically represents the permutative setup of the generation of scenario test 

conditions. 

The triple step test is a stress test that uses a maximum/zero/maximum schedule in order to test 

the adequacy of the BPTs when responding to massive changes in the throughput. The first 120 

minutes of this test sees the system being operated at the maximum throughput, which is 

followed by 120 minutes of no reservoir draws from the trunk mains. At 240 minutes, all 

reservoirs are again manually overridden to draw at their characteristic flow from the trunk 

mains.  

The last test (8.0) involved the assessment of the time taken for the BPTs to overflow should 

the valves stick at their fully open positions. An exhaustive list of the functions developed for, 

and used within, the model are presented in Table 9. A summary of the scenarios, and an 

assigned number for each is presented in Table 10, and a graphical representation of the 

permutations are presented in Figure 29. 

2 Reservoir Draws – 1 
betw. AD & WR- 1 After 

WR BPT

1 Reservoir Draw – After 
WR BPT

2 Reservoir Draws – 1 
betw. AD & WR- 1 After 

WR BPT + lumped draw

Valve maintenance 

(sleeve)- 1 Valve

Valve maintenance 

(sleeve)- 2 Valves

BPT maintenance 
(compartment)- 1 at AD 

BPT

BPT maintenance 
(compartment)- 1 at WR  

BPT

BPT maintenance 
(compartment)- 1 at AD 

BPT & 1 at WR  BPT

All reservoirs & Lumped 
Draw simultaneously 

drawing

Power Outage 

Valve Loss Test

All reservoirs after AD 
simultaneously drawing

All reservoirs after WR BPT 
simultaneously drawing

All reservoirs between AD 
& WR BPTs simultaneously 

drawing

 

Figure 29 - Summary of scenario test combinations 
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Table 9 - List of external functions used in the model execution. All functions were 

developed for use within the model – Bolded inputs indicate vectors 

Function Name Purpose Inputs 

sleeve1.m Linear regression of sleeve valve characteristics X co-ordinates, Y co-ordinates 

globe1.m Linear regression of sleeve valve characteristics X co-ordinates, Y co-ordinates 

demand.m Set reservoir consumer demands for current time 

step (Reservoirs between Ashley Drive and 

Wyebank Road BPTs). 

24 hr time, year 

Demand2.m Set reservoir consumer demands for current time 

step (Reservoirs after the Wyebank Road BPT). 

24 hr time, year 

voladd.m Integrate reservoir volumes. Incorporates a tank 

saturation feature 

Previous reservoir volumes, reservoir characteristic 

flows, previous time-step reservoir consumer demands, 

length of time increment, reservoir capacities 

SpositionerA.m Set valve position for current time-step based on 

Ashley Drive BPT control strategy. Incorporates 

a valve-movement time regulating feature.  

BPT level at current time-step, sleeve valve position at past 

time step, length of time increment 

GpositionerA.m Set valve position for current time-step based on 

Ashley Drive BPT control strategy. Incorporates 

a valve-movement time regulating feature. 

BPT level at current time-step, sleeve valve position at past 

time step, length of time increment 

SpositionerW.m Set valve position for current time-step based on 

Wyebank Road BPT control strategy. 

Incorporates a valve-movement time regulating 

feature. 

BPT level at current time-step, sleeve valve position at past 

time step, length of time increment 

SpositionerW.m Set valve position for current time-step based on 

Wyebank Road BPT control strategy. 

Incorporates a valve-movement time regulating 

feature. 

BPT level at current time-step, sleeve valve position at past 

time step, length of time increment 

valveinterp.m Linearly interpolate for a single point between 

the curves immediately above and below it, 

according to the previously regressed equation. 

Current valve position, head across the valve 

activator.m Toggle the binary activation parameter to set the 

flow into individual reservoirs between Ashley 

Drive and Wyebank Road BPTs. Parameter is 

toggled based on the programmed control 

strategy for each reservoir.  

Reservoir levels, lower deadband limits, upper 

deadband limits, previous toggle parameter values 

activatorw.m Toggle the binary activation parameter to set the 

flow into individual reservoirs after the 

Wyebank Road BPT. Parameter is toggled based 

on the programmed control strategy for each 

reservoir.  

Reservoir levels, lower deadband limits, upper 

deadband limits, previous toggle parameter values 

lambdafun.m Calculate the friction factor for each pipe 

segment based on the Colebrook-White 

Equation. 

Pipe relative roughness, pipe diameters, liquid density, 

current iteration (j) flowrate through the pipes, fluid 

viscosity, initial friction factor guess. 

pdrops.m Calculate the pipeline pressure drops according 

to the Darcy-Weisbach Equation. 

Density, pipeline friction factors, pipeline lengths, 

current iteration (j) flowrate through the pipes, pipe 

diameters. 
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Table 10  -Summary of simulated scenarios 
Number 

Scenario Description (year) Reservoir 

Initial 
Conditions 

BPT 

Initial 
Conditions 

Reservoir Draws 

0 Normal operation test (2036) 50% Full 70% Full Normal operation 

1.1  

Interaction test 

 

consistency test (model 

verification) 

 

Simple operation test 

 

(2036) 

50% Full 10% Full Only NR5 

 1.2 50% Full 

1.3 99% Full 

2.1 10% Full NR5 & Haygarth 

 2.2 50% Full 

2.3 99% Full 

3.1 10% Full NR5 & Haygarth & lumped draw before AD BPT 

 3.2 50% Full 

3.3 99% Full 

4.1  

Stress test 

 

(2036) 

50% Full 50% Full All reservoirs after WR BPT 

4.2 All reservoirs after AD BPT 

4.3 All reservoirs between AD & WR BPTs 

4.4 All reservoirs & lumped draw before AD  BPT 

5.1 Triple-step Test – Stress Test 

(2036) 

50% Full 50% Full Start: No reservoirs draw 

90 min: All reservoirs & lumped term draw 

180 min: No reservoirs draw 

6.0 Power Outage (2036) 50% Full 50% Full Normal Operation 

6.1 Stress test + Power Outage 

(2036) 

50% Full 50% Full All reservoirs & lumped draw before AD BPT 

6.2 Triple-step Test – Stress Test + 

Power Outage   (2036) 

Start: No reservoirs draw 

90 min: All reservoirs & lumped term draw 

180 min: No reservoirs draw 

7.1a Stress Test – Ashley Drive BPT 

compartment maintenance 

testing – (b – triple step test, 
c – triple step + power outage) 

(2036) 

50% Full 70% Full Normal Operation 

7.1b Start: No reservoirs draw 

90 min: All reservoirs & lumped term draw 

180 min: No reservoirs draw 

7.1c 

7.2a Stress Test – Wyebank Road 
BPT compartment maintenance 

testing – (b – triple step test, 

c – triple step + power outage) 
(2036) 

50% Full 70% Full Normal Operation 

7.2b Start: No reservoirs draw 

90 min: All reservoirs & lumped term draw 

180 min: No reservoirs draw 

7.2c 

7.3a Stress Test – One compartment 
in each BPT maintenance 

testing – (b – triple step test, 

c – triple step + power outage) 
(2036) 

50% Full 70% Full Normal Operation 

7.3b Start: No reservoirs draw 

90 min: All reservoirs & lumped term draw 

180 min: No reservoirs draw 

7.3c  

7.4a Sleeve Valve Maintenance (a – 
one in each BPT, b - two in each 

BPT, c – 2 in Wyebank Road 

BPT, d – 2 in Ashley Drive 
BPT) (2036) 

50% Full 70% Full Start: No reservoirs draw 

90 min: All reservoirs & lumped term draw 

180 min: No reservoirs draw 

7.4b 

7.4c 

7.4d 

7.5a 50% Full 70% Full Normal Operation 
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7.5b Sleeve Valve Maintenance (a – 

one in each BPT, b - two in each 

BPT, c – 2 in Wyebank Road 

BPT, d – 2 in Ashley Drive 
BPT)  (2036) 

7.5c 

7.5d 

8.0 Valve loss test  (2036) 50% Full 50% Full All valves suddenly open after 120 mins  
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5 DISCUSSION 

After attaining a complete, working mathematical model that can compute the system response 

to a set of input conditions, simulations were carried out in assess the performance of the 

proposed Western Aqueduct (WA), to gain an understanding of the interactions within the 

system, and to determine limits of the operability of the WA. Preconceived scenarios were 

preferred to stochastic simulations and Monte Carlo methods, as an understanding of the 

systems behavior is required. These methods can still be used with the model for future work, 

and may find use in the optimization of the control system. These methods could also find use 

if the model is paired with modifications to the methods presented by Biscos et al. (2002), in 

order to optimise the scheduling for turbine generators at the BPTs or micro and pico-stations 

at the reservoirs, as per the development plans of the eThekwini Metropolitan. 

Multiple scenarios were formulated and simulated within the model in order to delineate the 

effects of each of the components of the system, or to stress the system in order to understand 

the extents of the system operation. The simulated scenarios ranged from minor alterations that 

could be used to identify the effect of input conditions on the system behaviour, to step demand 

changes and simulations of power failures and maintenance situations, with various 

permutations of each. The stress tests, maintenance and power failure scenarios enable an 

understanding of how the operation of the system and its PLC control system are affected when 

placed under intense strain. This understanding allows for emergency preparedness and for the 

formulation of SOPs for such situations. Stress tests were preferred to stochastic simulations 

or Monte-Carlo type tests, as they can be carefully constructed to match a specific set of 

circumstances. The stress tests are also useful in determining the extents of the WA’s ability to 
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perform satisfactorily. The simulation results, including those of the base case operation, can 

also be used as a precursor to the optimisation of the control system should any results not be 

within their intended ranges. 
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5.1 Scenario 1.1: Imposed steady draw at Ntuzuma (9) – 
Control 1.0 

 All reservoir control systems overridden: Only Ntuzuma (NR5) draws continuously, at 

a steady rate. 

 The imposed steady draw rate of Ntuzuma is that of its characteristic draw rate. 

 NR5 has the largest individual reservoir draw, and is at the extreme end of the aqueduct. 

 Draw rate based on projections for 2036 flows. 

 Purpose: 

o Simple operational test to verify model performance and understand system 

interactions. 

o Neglects the impact of reservoir consumer demands and control systems on the 

performance of the WA system. 

o Provides insight to the effect of biased spatial allocations of demand (fire flows, 

new settlements etc.) 

Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

  

Scenario 1.1 

Classification Normal/override 

Start time 00:00 

Reservoir draws override (NR5 only) 

Sleeve valves 

active 

AD - 3 WR - 3 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 1.0 

Imposed (override) reservoir draw 

Reservoir draw as per reservoir control 

scheme 
No reservoir draw (overridden) 
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Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

 

All valves fully 
open initially

7.0 m settling 
level

BPT start 
level 
10%

 

All valves fully 
open initially

BPT start 
level 
10%

7.0 m  settling 
level

Zoomed 

section of 
oscillatory 

settling 
level

 

 

Rates: 2036 

1- Simple operational test to 

verify model performance and 

understand system 

interactions. 

2-  Only NR5 drawing 

continuously at its steady 

characteristic flowrate.  

Initial Conditions: All valves 

open, reservoirs 50 %, and BPTs 

10% full. 

 

Risk: 

1- Valve oscillations - wear risk. 

2- Settling level not at NOL 

(50% level) –overflow risk. 

3- Globe valve active during 

normal operation – deviation 

from design intent 

AD Initial:   WR Initial 

S1=    0.85     G1=  1   LAD
BPT= 50% of capacity  S1=0.85 G1=1 

S2=    0.85     G2=  1   LWR
BPT=50% of capacity  S2=0.85 G2=1 

S3=    0.85     G3=  1    Lres=50% of capacity       S3=0.85 G3=1 

Other Observations: 

Both BPTs establish settling levels at 7 m. AD after 

140 mins and WR, 60 mins. Globe valve 1 and 

sleeve valve 2 switch to maintain level in an 

oscillatory stable state. 

Figure 30 - Scenario 1.1 results overview – Imposed steady draw at Ntuzuma 

a 

b 

c 

d 
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 This scenario was envisaged to provide an uncomplicated set of results that could be used 

to analyse the system behavior in the absence of reservoir draw scheduling effects. It also 

enables a delineation and decoupling of the system components that interact in a complex 

manner during regular operation of the system. This test furthermore provides valuable 

insight into the operation of the system when the consumption demand is shifted toward a 

specific spatial location. The NR5 reservoir was selected to be overridden to draw 

constantly, due to it having the greatest consumer demand of the reservoirs downstream to 

the Wyebank BPT. Its average demand in 2036 represents 43.5% of the total anticipated 

demand downstream of the AD BPT in that year. It is also suited to the outcomes of this 

test due to it being at the extreme end of the aqueduct. 

 The BPT initial volumes (10%) are representative of a highly unlikely scenario, possibly a 

rebound from a failure state, or reboot from emergency maintenance. Under normal 

circumstances, the control system ensures that the volume of liquid within the BPT would 

remain within the upper 20% of the BPT capacity. The other possible, and an increasingly 

plausible situation it could accurately represent, is a shortage of potable water supply. 

According to the control philosophy (Section 3.3.2), the valves would initially adopt a 

fully-open state in this situation. 

 Figure 30a demonstrates the ability of the WR BPT to enact a greater demand draw upon 

the AD BPT than the AD BPT is able to demand from the supply source. This is understood 

from the marginal, yet observable difference between the supply and demand flows (AD 

BPT), despite the absence of direct draws between the AD and WR BPTs, and the presence 

of a sizable draw downstream of the WR BPT. It is anticipated that this result will be more 

clearly visible in the presence of direct draw(s) from the AD BPT (to reservoirs that are 

supplied between the two BPTs e.g. Haygarth Road), and will thus be discussed in more 

detail in Section 5.2. 

 The constant WR BPT draw that is visible between 35 min and ~64 min in both Figure 30a 

(as the flow out of AD) and Figure 30b (as the flow into WR) corresponds to the lack of 

valve movements (WR BPT) within this period, as demonstrated in Figure 30d. An 

equivalent condition for the AD BPT is observed between 90 min and 140 min. This 

observation is explained by the BPT levels residing within the confines of a control system 

sub-range (6.5m<ℎ<7.0m), in which no valve changes are stipulated. The prolonged length 

of these periods is due to the gradual (slowed) closure of the valves in a manner that 

resembles the action of an integral controller. It is within these periods that the BPT levels 



 

102 

 

gradually climb to 7 m, where an apparent settling level is consequently established. The 

control system is then seen to maintain this apparent settling level, thus causing the levels 

and valve positions to become ‘oscillatory stable’. The lack of visibility of the oscillations 

in the BPT level curves indicates that valve movement frequency is high enough to 

attenuate the resultant level oscillation. The presence of the minute oscillations within the 

level curves is shown in the inset image in Figure 30b and the zoomed section in Figure 31. 

 The fitted-operation BPT control system mechanisms can be described through its 

determination of the systems behavior as presented in Figure 30 (a-d). As described in 

Section 3.3.2, the system consists of control sub-regions, at whose boundaries the 

adjustment of one or more control valves are stipulated, giving rise to ‘staggered valve 

movements’, as observed in Figure 30c and Figure 30d. This forms a system of localized 

bang-bang control where any flow imbalance will cause the BPT level to gravitate toward 

a specific sub-region boundary. This boundary is then established as the settling level until 

the downstream demand is altered to a sufficient extent to cause the level to drift to another 

sub-region boundary. Small flow imbalances will be compensated for through the 

aforementioned oscillatory movement of the valve around the established settling level. 

The traversing of a system boundary sets any valve that is programmed to move on a set 

trajectory toward its required position, governed only by the preset valve movement rate.  

It is thus likely that the control system will always establish BPT settling levels at these 

sub-region boundaries. The make-up of Control 1.0 resembles the principle of a 

proportional controller, where larger outlet flow demands will necessitate further opening 

of valves, and thus lower BPT levels. 

 

Figure 31 - Zoomed section around the oscillatory settling level of the BPTs. 
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 The irregular pattern of the oscillations depicted within Figure 31 are due to the difference 

between the flowrate change for the predetermined, fixed per-interval valve movement, and 

the outlet (demand) flowrate. The phenomenon will be discussed further in Section 5.2 

 The high number of valve movements, required to maintain the ‘oscillatory stable’ settling 

levels unintendedly resulting from the stipulated control philosophy (Control 1.0), are 

undesirable from both an operational, and a maintenance perspective. Such repeated valve 

movements are unnecessary and can increase the amount of wear on the valves. 
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5.2 Scenario 0: Normal operation (Base case) test – Control 1.0 

 Base case test to represent the behavior of the Western Aqueduct under normal 

operating conditions 

 Reservoir consumer demand draws determined by the consumer diurnal demand profile 

for the reservoir. 

 Reservoir draw schedules (from the trunk mains) determined by the reservoir control 

system and the reservoir water level. 

 Initial BPT volumes and reservoir levels are set to 50%, valves to their fully open states. 

 All flows are based upon projections for 2036. 

 Purpose: 

o Represents the most-encountered operational scenario. It is thus important to 

enact an analysis that can assist in the improvement of operations and possibly 

prompt optimization-based amendments to the system. 

o Determining the adequacy of the system to cope with the daily exertions, and to 

analyse the system behavior under these conditions 

o Assess the conformity of the system to design expectations 

Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

  

Scenario 0 

Classification Normal- Base case 

Start time 00:00 

Reservoir draws Diurnal (all) 

Sleeve valves 

active 

AD - 3 WR - 3 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 1.0 

Imposed (override) reservoir draw 

Reservoir draw as per reservoir control 

scheme 
No reservoir draw (overridden) 
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Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

 

 

 

 

Rates: 2036 

1- Represents the most-

encountered operational 

scenario.  

2- All consumer draws as per 

projected schedules. All 

reservoir draws from mains 

determined by control systems  

Initial Conditions: All valves 

open, reservoirs 50 %, and BPTs 

10% full. 

 

Risk: 

1- Valve oscillations - wear risk. 

2- Settling level not at NOL 

(50%) –overflow risk. 

3- Globe valve active during 

normal operation – deviation 

from design intent due to (2) 

AD Initial:  WR Initial 

S1=    0.85     G1=  1   LAD
BPT= 70% of capacity  S1=0.85 G1=1 

S2=    0.85     G2=  1   LWR
BPT=70% of capacity  S2=0.85 G2=1 

S3=    0.85     G3=  1    Lres=50% of capacity       S3=0.85 G3=1 

Other Observations: 

BPT design adequate to establish settling levels 

when demand variations are encountered. BPT 

settling levels vary, based upon variations in 

demand draws. Multiple valves perform duties in 

response to demand variations. 

Figure 32 - Scenario 0 results overview – Normal operation (base case) test – Control 1.0. 
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Sleeve valve 2
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b 

c 
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6.5 m settling level BPT start level 70% 

All valves fully 

open initially 

 

BPT start level 70% 

7.0 m settling level 

  
8.0 m settling level 

 

All valves fully open 

initially 
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 The base case operation was simulated for the design conditions that are anticipated in 

2036. The results are important in determining the adequacy of the system to cope with the 

daily exertions, and to analyse the system behavior under these conditions. The necessity 

of this scenario is borne from the realisation that this represents the most-encountered 

(everyday) operational scenario. It is thus important to enact an analysis that can assist in 

the improvement of operations and possibly prompt optimization-based amendments to the 

system. 

 Figure 32 depicts the simulation results for the AD and WR BPTs at base case conditions. 

The aforementioned ability of the WR BPT (Section 5.1) to demand a greater inlet draw 

than the AD BPT, can be most clearly observed by the large difference between inlet and 

outlet flow to the AD BPT, in Figure 32a. This is attributed to the shorter pipeline length 

from the AD BPT to the WR BPT (9.34 x103 m) compared to that from Umlaas Road to 

the AD BPT (40.01x103 m). The shorter pipeline length results in a lower line, and thus 

cumulative resistance on the inlet line to the WR BPT, since the valve types, numbers and 

configurations are identical in both BPTs. 

 The maximum visible system throughput is 8.5 
𝑚3

𝑠
 (734.4

𝑀ℓ

𝑑𝑎𝑦
) greatly exceeds the 

maximum design throughput (400 
𝑀ℓ

𝑑𝑎𝑦
). This could be problematic in terms of strength of 

materials and maintenance. The maximum throughput is governed by the system 

hydraulics, when the inlet control valves are fully open. The throughput is thus determined 

by the interplay between the available upstream head, and the line resistance. For this 

reason, each independent pressure zone (Umlaas Road to AD BPT & AD BPT to WR BPT) 

would have a different maximum throughput, the smaller of which would be the limiting 

throughput for the system. This drastic under prediction of the maximum throughput could 

prove disastrous if a trunk main section were to rupture, especially in the absence of 

automated, intelligent override control. For example, if the trunk main leading from the AD 

BPT to the WR BPT were to rupture, the AD BPT control valves would open to ‘supply’ 

the rupture point, thus drawing at the maximum throughput rate from the Umlaas Road 

reservoir. 

 The large initial (outlet) draw (𝑡𝑖𝑚𝑒 = 0) experienced by the AD BPT is due to the 

combination of the WR control system’s required fill rate, in order to reach a settling level, 

and the effect of the simultaneous demands of the reservoirs after the AD BPT.  



 

107 

 

It should be noted that although the reservoir hydrographs obtained from Stephenson 

(2012) provide a consumer demand classification in one hour increments, the reservoir 

draws from the trunk mains are governed by the reservoir control system through its liquid 

level. The cumulative effect of the reservoir draws, that are most clearly observed as the 

WR BPT outlet flow (Figure 32b), therefore does not increment according to an hourly 

schedule, but according to the individual requirements of each reservoirs control system. 

The behavior of the reservoir levels (between the two BPTs) with time, for this base case 

scenario are shown in Figure 33. 

 The synchrony of the reservoir draws from the trunk mains, which is thus indirectly 

determined by the consumer draws, has a major impact on the results of the model. The 

magnitude of the impact can be understood from the fact that the 2036 draws are significant 

with respect to the total capacity of the BPTs. The 2036 average daily demand on all 

reservoirs after AD is forecasted to be 185.9 
Ml

day
 (𝐵𝑃𝑇 𝑑𝑎𝑖𝑙𝑦 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒 =  9.3) and 

that for all reservoirs after the WR BPT is forecasted to be 127.9 
Ml

day
 

(𝑑𝑎𝑖𝑙𝑦 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒 =  12.8). It is thus noted that the accuracy of the reservoir control 

policy; the projected consumer demand schedules and magnitudes are critical in the 

construction of an accurate representation of a system.  

 The step-like synchronous effect of reservoir draws from the trunk main, is observed in 

Figure 32b as the WR BPT outlet flow. This step-like behavior can be attributed to the 

binary toggle that the reservoir control system utilises (valve open/closed or pump on/off) 

in order to toggle inlet flow (at the characteristic flowrate) to maintain the reservoir levels 

between the preset deadband limits. Although the consumer demand on each reservoir 

follows projected schedules and magnitudes (see Section 4.4), the effect on the trunk mains 

are determined by the level of the reservoir.   
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Figure 33 - Simulation results for the reservoirs between the two BPTs for base case 

conditions. Deadband control can be observed in the individual levels. 

 A series of successive BPT (inlet) draw decreases (25 mins<t<35 mins) is observed in 

Figure 32a and Figure 32b after the initial elevated draw. This corresponds to the sequential 

closing of the inlet valves to the WR BPT leading up to the attainment of a settling level in 

the WR BPT and two reservoirs breaching their upper deadband limits at t=30 mins and 

t=70 mins (Haygarth and Tshelmnyama). All reservoirs represented in Figure 33, and the 

remaining reservoirs after the WR BPT, are still filling during the period t<100 mins, which 

accounts for the stable outlet flowrate observed for 30 mins<t< 90 mins. The effect of the 

aforementioned t=70 min reservoir draw toggle (off) is not observed within the AD BPT, 

as any excess flow is utilized in increasing the WR BPT settling level. The WR BPT settling 

level (Figure 30b) can thus be seen to be climbing toward the 8m level, from its current 7 

m level. Further patterns are explained through an analogous reasoning process. The 

ultimate cause of the dynamic (shifting) settling levels can thus be said to be the cumulative 

effect of the diurnal demand profiles of the individual reservoirs. This is in turn due to the 

proportional-type control of Control 1.0, which must allow the BPT level to decrease to 

cause the inlet valves to open and thus admit higher flows. 

 The dynamic behavior of the control system, as alluded to above, can be more clearly 

understood from Figure 32. The AD BPT can be seen to establish a settling level of 6.5 m 

for elevated demand spurts, and sustained demand flows above 1.5 m3/s. At t=140 mins, 

upon the decrease of the outlet flow to 1.5 m3/s, the inlet flow is maintained to adjust the 
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settling level to 7 m. Numerous instances of this behavior can be observed within both 

BPTs over the length of the simulation. 

 The oscillation patterns (of the inlet flow curve) within the settling level maintenance 

periods in Figure 32a (75 mins<t<95 mins & 120 mins<t<140 mins) vary significantly. 

This can be attributed to the difference in the outlet (demand) flowrate from the BPT. The 

valve target positions within these two phases alternate between the same two settings 

(above and below 6.5 m level). The result is that the incremental, regulated change (valves 

per interval movement is fixed) in the valve positions (1 sleeve valve only) institutes a 

different effect on the BPT level. The difference in the effect on the BPT level is caused by 

the difference between the inlet flowrate change for the permitted valve movement, and the 

outlet flowrate that is determined by downstream demands (inlet flow does not match outlet 

demand). Within the first phase, since the outlet (demand) flow is lower, the incremental 

valve position alteration is sufficient to deliver a level increase that would allow the level 

to remain above the 6.5 m limit for ~3.5 mins. The greater outlet (demand) flow in the 

second phase however results in an oscillating pattern whose period is shorter. In this phase, 

the valve incremental opening can only sustain the level above the 6.5 m boundary for ~2 

mins. The period between 40 mins<t<60 mins in Figure 32b does not show oscillatory 

patterns because a settling level has not been established, and the level is thus climbing, 

albeit at a minimal rate. Both BPTs can be observed to be reaching an individual settling 

level at t=180 mins.  

 

Figure 34 - Simulation results for the waterhammer transient phenomenon at the AD 

BPT (right axis). Valve positions are represented on the left axis – Control 1.0. 
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Figure 35- Simulation (Scenario 0) results for the waterhammer transient phenomenon 

at the WR BPT (right axis). Valve positions are represented on the left axis – Control 1.0. 

Figure 34 and Figure 35 display the results of the transient analysis of the AD and WR BPTs 

respectively. The valve positions are also plotted on the same plot area in order to exhibit the 

causal relationship between the two variables. The inclusion of both the steel pipe analogy and 

the results of the Joukowsky equation computation is due to the limited applicability of the 

Joukowsky equation to the system. The limitations of the Joukowsky relationship arise as the 

valve closure times (600 sec) are greater than the maximum communication time                                  

( 84 secctt  ). Furthermore, the Joukowsky equation accounts for a complete valve closure, a 

situation that is never encountered within these scenarios due to the staggered nature of the 

PLC control system. This accounts for the drastically larger overpressures calculated for the 

Joukowsky equation, compared to those for the steel pipe analogy. The steel pipe analogy itself 

does not account for the elasticity of the pipe walls, nor for the fluid compressibility, and can 

thus be expected to also overpredict the overpressures.  

The overpressure generation can be seen to occur at the same instant as a valve position change, 

due to the velocity change that accompanies the valve closure. The highest possible 

overpressure generation can be predicted to occur upon commencement of the simulation if the 

valve initial starting positions do not correspond to those of the PLC settings (Control 1.0 - 

Figure 18). This could result in the simultaneous movement of all valves that are out of position 

(albeit at their regulated movement rate) thus causing the compounding of the overpressure 

generated. A similar (yet less severe) situation is observed in both Figure 34 and Figure 35 (0 
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min <t< 4 min), when all three sleeve valves simultaneously move. In any other instance, when 

compliance to the PLC control system is found, the generated overpressure would tend to be 

of similar magnitude to one of the two possible magnitudes that could correspond to a single 

sleeve valve movement or a sleeve valve movement combined with a globe valve movement. 

The globe valve closures however, can be seen to cause a negligible overpressure. This is due 

to the fact that according to the control philosophy, upon movement of the globe valves, two 

of the three sleeve valves are already shut, thus already presenting a large resistance to flow. 

The result is that the globe valve closure does not correspond to a large change in the flowrate, 

consistent with its intended (design) purpose. The globe valve movements are however 

expected to generate appreciable overpressures when they are used to regulate flow in the event 

of a power outage. 

It is observed from Figure 34 that the closure of the valves generates positive (forward) 

overpressures while opening of the valves generates negative (backward) overpressures, 

upstream of the valve. This directional analysis corresponds to Newton’s Third Law.  

The maximum overpressure generated (~8 bar) is appreciable with regard to the maximum 

static head (194m, 183.5m corresponding to 41.2% and 43.6% of the maximum static head 

respectively). Although the steel pipe analogy computation yielded lower, yet still appreciable 

results (1.1 bar), a detailed surge analysis is required to allay any doubts about the design 

integrity of the system, and to identify the need for mitigation measures. The necessity of the 

surge analysis is compounded by the neglecting of the effect of the Duffs Road (Aloes) 

reservoir in the original design.  
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5.3 Scenario 5.1: Triple step override test – Control 1.0 

 Stress test to examine the adequacy of the system design to large, sustained demand 

variations. 

 All reservoirs overridden (imposed flows) to draw from the trunk mains, at each 

reservoirs’ respective characteristic flowrate, according to the following user setting: 

 Step 1: At 𝑡𝑖𝑚𝑒 = 0 𝑚𝑖𝑛𝑠, all reservoirs overridden to cease drawing from the trunk mains. 

 Step 2: At 𝑡𝑖𝑚𝑒 = 180 𝑚𝑖𝑛𝑠, all reservoirs overridden to begin drawing from the trunk mains, 

continuously at their respective characteristic flowrates. 

 Step 3: At 𝑡𝑖𝑚𝑒 = 360 𝑚𝑖𝑛𝑠, all reservoirs overridden to cease drawing from the trunk mains. 

 Initial BPT volumes and reservoir levels are set to 50%, valves to their fully open states. 

 All flows are based upon projections for 2036. 

 Purpose: 

 Represents a string of worst-case scenario situations that could occur due to 

user demand variations or emergency conditions e.g. (large, widespread 

wildfires). 

 Determining the adequacy of the system to cope with extraordinary demand 

variations, and to offer insight to possible procedural improvements for such 

cases. 

Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

   

Scenario 5.1 

Classification Stress – triple step 

Start time 00:00 

Reservoir draws Override (all) 

Sleeve valves 

active 

AD - 3 WR - 3 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 1.0 

Imposed (override) reservoir draw 

Reservoir draw as per reservoir control 

scheme 
No reservoir draw (overridden) 
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Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 
BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

 

All valves fully 
open initially

All reservoirs 
start drawing 
at 180 mins

All reservoirs 
cease drawing 

at 360 mins

 

All valves fully 
open initially

All reservoirs 
start drawing 
at 180 mins

All reservoirs 
cease drawing 

at 360 mins

 

 

Rates: 2036 

1- Represents a string of worst-

case scenario situations 

2- Used to analyse the WA’s 

capability to cope with large 

user demand variations 

Initial Conditions: All valves 

open, reservoirs 50 %, and BPTs 

10% full. 

 

Risk: 

1- Valve oscillations - wear risk. 

2- Overflow risk on step 1 and 

step 3 

3- Settling level not at 50% level 

–overflow risk. 

AD Initial:  WR Initial 

S1=    0.85     G1=  1   LAD
BPT= 50% of capacity  S1=0.85 G1=1 

S2=    0.85     G2=  1   LWR
BPT=50% of capacity  S2=0.85 G2=1 

S3=    0.85     G3=  1    Lres=50% of capacity       S3=0.85 G3=1 

Other Observations: 

Both BPTs exceed 8.0 m when all downstream 

demands are ceased. Resumption of downstream 

demands causes the settling level in AD and WR to 

be 6.0 m and 6.5m respectively.  

System copes well with maximum demand 

Figure 36 - Scenario 5.1 results overview – Triple step override test – Control 1.0.  

b 

c 

d 
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 Scenario 5.1 was designed in order to assess the system’s response to rapid changes in 

demand, and to assess the volume changes within the BPTs under such circumstances. The 

triple-step stress test represents a string of worst-case scenario tests. This analysis is 

intended to provide valuable emergency preparedness for situations such as dispersed, 

runaway wild fires that would require massive, instantaneous water draws from numerous 

reservoirs around the affected regions. It also enables the evaluation of the valve closure 

times which aid in preventing transient overpressure, but can render the system sluggish in 

its reaction to demand cessations, thus causing catastrophic overflows within the BPTs. 

 The system response to the lack of demand flows is observed within the starting period in 

Figure 36a and Figure 36b. The WR BPT (Figure 36d) can be seen to initially rapidly shut 

its valves in order to decrease the incoming flow, yet the valve closures are slowed between 

20 mins and 40 mins. This is due to the restricted valve movement rates and staggered 

control arrangement and it allows the BPT level to rise to above 100% (8 m), although an 

overflow will not occur as an allowance as been provided within the BPT height (8.3 m is 

the overflow level). The filling of the BPTs to above their maximum level is undesirable, 

and action should be taken to prevent this occurrence.  

 The final settling level is thus determined by the initial position of the globe valves and the 

rate to which their movement is restricted. Since no demand flows are stipulated in these 

test periods, the BPT level cannot not decrease. Thus, if the valves are initially all set to 

their fully open positions, and the BPT exit flow suddenly stops, a variable settling level, 

above its target settling level, is likely to occur. 

 The similar response observed, from Figure 36a for the AD BPT, is notably slower. While 

it only takes ~39 mins for the WR BPT to reach its maximum level (stability), the AD BPT 

takes ~85 mins to reach stability. This can be explained through the volume differences 

between the two BPTs and their series arrangement. The WR BPT volume is half that of 

the AD BPT while their depths are equal. This combined with the WR BPTs ability to 

demand higher rates of inlet flows than the AD BPT, results in the WR BPT achieving an 

increase in level much faster than the AD BPT. The AD BPT response is thus slowed by 

its responsibility to supply the WR BPT, at a high rate. The WR BPT draw from the AD 

BPT is able to exceed the AD BPT inlet draw is because the BPT draws are governed only 

by the BPT levels and the interplay between the line losses and valve resistances, and not 

by any outlet flow control. The AD BPT inlet flow will thus always trail its outlet flow 

(Figure 36a). 
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 At the 180 min step, the outlet draw from the WR BPT instantly increases from zero to the 

sum of the characteristic flows (2.96 m3/s) for the reservoirs downstream of the BPT. The 

WR BPT can then be observed to establish its new settling level at 6.5 m within ~26 mins 

(Figure 35b). The AD BPT (Figure 35a) however, due to its aforementioned responsibility 

to indirectly respond to the WR BPT level, does not exhibit the clarity of the described step 

increase in outlet flow. The average magnitude of the subsequent increase however, can be 

seen to be the sum of the characteristic flows of all the reservoirs downstream of it 

(4.33 m3/s). The AD BPT reaches stability within ~60 mins of the step, at a level of 6 m. 

The discrepancy between the stability levels of the BPTs can be explained by the difference 

between the supply and demand capabilities of the two BPTs. The WR BPT is able to 

demand more inlet flow than the AD BPT, yet must supply a smaller outflow, allowing its 

stability level to be higher than that of the AD BPT (according to the PLC scheme in Figure 

18, lower levels correspond to lager inflows). The AD BPT’s PLC control system must thus 

satisfy the demand with a lower settling level. 
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5.4 Sensitivity tests (longevity) – Control 1.0 

Various sensitivity tests were conducted in order to examine the limits of the longevity of the 

WA system, and to assess the change in its performance over an extended time period. 

Consumer demands increase yearly according to forecasted (y/y) growth factors. This results 

in the BPT levels decreasing successively, as explained in Section 5.3. 

5.4.1 Scenario 5.1  

 

 

 

 

 

The instantaneous shutting off of all draws from the trunk main results in a slight overshoot of 

the 8 m (100%) level, necessitating some form of remedial action. In order to assess the impact 

of sustained elevated demands and rapid demand changes for higher flows, a sensitivity 

analysis of the time taken for BPT to reach its stability level at the second step (refer to 

Section 5.3) was conducted. The results of the test, with regards to the BPT stability levels for 

the second step (all draws on) correspond closely to the sensitivity plot for Scenario 4.4 due to 

the similar conditions, and the discussion will thus be deferred. The settling level for the no-

draw steps (step 1 & step 3) remains as 8 m for both BPTs for all years of operation, yet the 

aforementioned overshoot (below overflow level) always occurs. 

Scenario 5.1 

Classification Stress – triple step 

Start time 00:00 

Reservoir draws Override (all) 

Sleeve valves 

active 

AD - 3 WR - 3 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 1.0 
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Figure 37 - Sensitivity plot of the time at which stability levels of the BPTs are reached 

for the third step (toggle draws off) in Scenario 5.1 vs the year of operation – Control 1.0. 

It is observed in Figure 37 that the system takes a progressively longer time to establish its 

settling level. This is due to a consistently decreasing (with year) settling level, that is attained 

when the reservoir draws are toggled on at t=180 mins. The reason for the decrease in stability 

level is provided in Section 5.4.3 is thus the increasing downstream demand and the resultant 

decrease in settling level, that is required cause an increase in the inlet flowrate.  

5.4.2 Scenario 4.3  

 

 

 

 

 

 

 

Scenario 4.3 was developed to test the interaction of the BPTs in the absence of draws 

downstream to the WR BPT. This allowed for the isolation of the AD BPT and the reservoirs 

it supplies directly from the delayed effects of the WR BPT and its downstream draws. All 

reservoirs between AD BPT and WR BPT were thus set (imposed flows - overridden control 

system) to draw from the trunk mains at their characteristic flows. All other reservoirs and the 
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lumped demand term (halfway between Umlaas Road and the AD BPT) were set to cease any 

draws from the trunk mains. The initial BPT volumes were set to 50%, as were the initial 

reservoir volumes, while the valves were set to their fully open states. 

The overdesign within the BPT subsystems renders the system capable of managing the 2036 

flows, in a manner that is similar to, but less stressful to the system than Scenario 5.1.  

 

Figure 38 - Sensitivity plot of the stability levels of the BPTs for Scenario 4.3 conditions 

vs the year of operation – Control 1.0. 

Figure 38 presents a sensitivity plot of the BPT stability levels (Scenario 4.3) to the year of 

operation. The demand flows increase yearly in a compounded manner, thus affecting the 

operation of the system. Although the sensitivity is plotted against the year of operation, it 

therefore also applies to a commensurate increase in flow. The WR BPT level remains constant 

as there are no draws downstream to it, and so the valves simply remain shut, rendering it a 

dead end.  

The reasons for the successive decreases in the stability level of the AD BPT have been 

provided in Section 5.3. The AD BPT can be seen to fail (unable to replenish its level) in the 

year 2155. The 119 years, between the design year and the year of the projected failure, 

represents an acceptable (if not too high) overdesign margin.  
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5.4.3 Scenario 4.4  

 

 

 

 

 

 

Scenario 4.4 was developed to test the response of the system to sustained, elevated draws, 

which could be realized in the event that fire flows become necessary. The lumped demand 

upstream of the AD BPT was set to zero in order to negate its effects on the BPTs. All reservoirs 

after the AD BPT were set (overridden control system) to draw from the trunk mains at their 

characteristic flows. The initial BPT volumes were set to 50%, as were the initial reservoir 

volumes, while the valves were set to their fully open states. 

The large overdesign within the BPT subsystems also renders the system capable of managing 

the 2036 characteristic flows, even for a sustained period of time. 

 

Figure 39 - Sensitivity plot of the stability levels of the BPTs for Scenario 4.3 conditions 

vs the year of operation. 

The sensitivity plot presented in Figure 39 for Scenario 4.4 is analogous to that presented in 

Figure 38. The activity of the WR BPT, due to the exertions of the sustained downstream draws, 

however places an additional strain on the AD BPT, which accelerates its decline in adequacy. 
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Classification Stress – localized 
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Start time 00:00 
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Globe valves 

active 
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Control system Control 1.0 



 

120 

 

The AD BPT can thus be seen to fail during the year 2106 and the WR BPT during 2152. The 

margin of safety, in terms of the number of years to failure, is sufficient to instill confidence in 

the design.  
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5.5 Scenario 6.0: Power loss test - Normal operation – Control 1.0 

 The power loss test (under normal operating conditions), is meant to represent the 

behavior of the Western Aqueduct under normal operating conditions in the event of a 

loss of electricity. 

 The loss of electricity renders the sleeve valves inoperable. The simulation thus 

involves the sleeve valves adopting a fully-open position upon the loss of electricity. 

 AD BPT level shown for multiple scenarios. All other results for Scenario 6.0 

 Reservoir consumer demand draws and trunk main draw schedules are as per the test 

description. (6.0 – normal operation, 6.1 – all reservoirs draw, 6.2 – triple step test) (see 

Table 10). 

 Initial BPT volumes and reservoir levels are set to 50%, valves to their fully open states. 

 All flows are based upon projections for 2036. 

 Purpose: 

o Represents an oft-encountered scenario, which was given due consideration 

during the design phase. It is thus important that the system deal adequately with 

such situations, particularly under normal operating conditions. 

o Determining the adequacy of the system to cope with the daily exertions, and to 

analyse the system behavior under these conditions 

Umlaas Road 
Reservoir

Ashle y Road BPT 
(20Ml)

Wyebank Road 
BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 
Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

  

Scenario 6.0 

Classification Stress – power loss 

Start time 00:00 

Reservoir draws Diurnal (all) 

Sleeve valves 

active 

AD - 3 WR - 3 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 1.0 

Imposed (override) reservoir draw 

Reservoir draw as per reservoir control 

scheme 
No reservoir draw (overridden) 
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Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 
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Globe valve 2

Sleeve valve 1

Globe valve 3
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Loss of electrical power 
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Rates: 2036 

1- Simulates the likely situation 

of a power outage. The sleeve 

valves are rendered 

inoperable. 

2- Was considered during the 

design phase 

Initial Conditions: All valves 

open, reservoirs 50 %, and BPTs 

10% full. 
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Wyebank Road BPT - Valves

Globe valve 3

Globe valve 1

Globe valve 2

Sleeve valve 2

Sleeve valve 3

Sleeve valve 1

Loss of electrical power 
renders sleeve valves 

inactive

 

Risk: 

1- Overflow – Both BPTs 

overshoot their maximum 

level 

2- Valve oscillations - wear risk. 

3- Settling level not at 50% level 

–overflow risk. 

AD Initial:   WR Initial 

S1=    0.85     G1=  1   LAD
BPT= 50% of capacity  S1=0.85 G1=1 

S2=    0.85     G2=  1   LWR
BPT=50% of capacity  S2=0.85 G2=1 

S3=    0.85     G3=  1    Lres=50% of capacity       S3=0.85 G3=1 

Other Observations: 

Globe valve reaction too slow, resulting in 

overflows in both BPTs. Globe valves oscillate 

with a higher amplitude than when sleeve valves 

are active – maintenance (wear) risk. Third step 

produces no significant change (Scenario 6.2). 

Figure 40 - Scenario 6.0 results overview – Power loss test (normal operation). 

b 

c 

d 
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 Scenario 6.0 is a mathematical representation of the very likely situation of a loss of 

electricity. Scenario 6.1 and 6.2 subject the WA system to stressed operating conditions in 

the absence of electricity (conditions in Table 10). South Africa has in recent times been 

plagued with electricity cuts in the form of load shedding. Much consideration was given 

to this situation during the design of the control system and the associated control elements 

(Section 3.2.1). The results of this scenario therefore will impact on the level of certainty 

in the design of the BPT control system, and may underpin the necessity for optimization 

of the PLC control system. 

 During the power outage, as shown in Figure 40(a-d), the sleeve valves are rendered 

ineffective, and so the flow regulating function is assumed by the globe valves. It 

immediately becomes apparent from the somewhat more rapid and violent oscillations of 

the BPT-controlled flowrates (Figure 40(a-b)), that the tightness of control is increased. 

This can be attributed to a greater sensitivity of the inlet flow rate to an incremental change 

in the globe valve position (higher regulated movement rate), than that for the sleeve valves 

in combination with the globe valves. 

 Observable oscillations within the BPT level curves (Figure 40(a-b)) also reinforce the 

observation that the sensitivity of the inlet flowrate to the globe valve movements is higher. 

This will cause the magnitude of the generated waterhammer overpressures to increase 

significantly. Figure 40(c-d) shows that the globe valve movements are rapid, and of a large 

magnitude. The high number of oscillations could present a maintenance issue. 

 The delayed movement of the globe valves (see Figure 18 for the control algorithm) causes 

the level to overshoot the 8.0 m settling level. No overshoot is observed in the analogous 

scenarios when the sleeve valves are active. The delayed movement of the globe valves is 

particularly perilous in the case of a low initial level. The level curve (Scenario 6.2) in 

Figure 40(a) shows a large overshoot (8.57 m) from the 8.0 m settling level that extends far 

over the maximum capacity of the BPTs (8.3 m), thus causing an overflow.  

 The BPT response to demand variations is more rapid - this is best observed by the ability 

of the system to closely maintain the 8.0 m settling level, upon cessation of the demand 

flows at 180 mins (Figure 40(a) – Scenario 6.2). This can also be seen from the lack of a 

large overshoot, as observed in the analogous Scenario 5.1, upon the cessation of demands 

at 360 minutes. 
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5.5.1 Water hammer analysis – Scenario 6 – Control 1.0 

 

Figure 41 - Results of the water hammer analysis for Scenario 6. Overpressures are 

plotted on the right axis and valve movements are on the left axis. 

Figure 41 presents the results of the water hammer analysis for Scenario 6.2. A significantly 

higher number of overpressures are generated, with a larger magnitude, than the equivalent 

scenarios wherein the sleeve valves are active. The large overpressure generated at ~55 minutes 

is caused by the simultaneous closures of the valves. 
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5.6 Scenario 7.3: Maintenance (compartment) test – Control 1.0 

 Intended to represent the response of the WA to varying conditions during maintenance 

of a BPT compartment. 

 One compartment in each BPT out of service, thus halving the effective volume of the 

BPTs. 

 AD BPT level shown for multiple scenarios. All other results for Scenario 7.3a 

 Reservoir consumer demand draws and trunk main draw schedules are as per the test 

description (7.3a – normal operation, 7.3b – triple step test) (see Table 10). Base case 

(Scenario 0) shown for comparison. 

 Initial BPT volumes and reservoir levels are set to 70% and 50% respectively, valves 

to their fully open states. All flows are based upon projections for 2036. 

 Purpose: 

o The BPT maintenance, and uninterrupted supply during this scenario, was a 

major consideration during the design phase. Such a scenario is thus important 

in asessing the resultant design. 

o Useful in drawing up SOPs for maintenance, and in the preparation of 

maintenance schedules. 

Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

  

Scenario 7.3a 

Classification Stress – BPT 

compartment 

maintenance 

Start time 00:00 

Reservoir draws Diurnal (all) 

Sleeve valves 

active 

AD - 3 WR - 3 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 1.0 

Imposed (override) reservoir draw 

Reservoir draw as per reservoir control 

scheme 
No reservoir draw (overridden) 
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Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)
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5
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Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm
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Rates: 2036 

1- important in asessing the 

design. 

2- Useful in drawing up SOPs for 

maintenance, and in the 

preparation of maintenance 

schedules. 

Initial Conditions: All valves 

open, reservoirs 50 %, and BPTs 

10% full. 
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Risk: 

1- Larger number of valve 

movements presents a greater 

maintenance/wear risk 

2- No added risks/adverse effects 

due to maintenance. 

AD Initial:   WR Initial 

S1=    0.85     G1=  1   LAD
BPT= 70% of capacity  S1=0.85 G1=1 

S2=    0.85     G2=  1   LWR
BPT=70% of capacity  S2=0.85 G2=1 

S3=    0.85     G3=  1    Lres=50% of capacity       S3=0.85 G3=1 

Other Observations: 

Both BPTs cope satisfactorily under these 

conditions. The demand draw variations have a 

larger impact on the level within the BPTs. 

Figure 42 - Scenario 7.3a results overview – Maintenance (compartment) test. 

b 

c 

d 
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 This scenario is intended to represent the WA performance during the simultaneous 

maintenance of a single compartment within each BPT. The results of the test would thus 

be used to provide an assurance of the ability of the system to maintain normal supply when 

maintenance is required. Furthermore, maintenance schedules and standard operating 

procedures for maintenance can be drawn up, by using the results of this scenario test. 

 Figure 42a presents the results of the base case test (Scenario 0) for the AD BPT level 

together with the results of Scenario 7.3a and Scenario 7.3b. The base case AD BPT level 

can be seen to be more flat, and thus less sensitive to downstream demand variations than 

the equivalent results for Scenario 7.3a. This is attributed to the reduced operational surface 

area within the BPTs. For this reason, the BPT response to the triple step test (~20 mins to 

reach stability after each step) is markedly more rapid than the response observed in 

Scenario 5.1 (~45 mins to reach stability after each step). 

 Although the reduced operational area causes larger fluctuations in the BPT level due to 

downstream demand variations, the control system is capable of maintaining supply. This 

can be observed by the overall adherence of the AD BPT level curve (Figure 42a) to the 

base case curve. In order to achieve this, the control system can be observed to be 

demanding a greater number of valve movements (Figure 42(c-d)). 

 The ability of the system to cope with Scenario 7.3a conditions is unsurprising, as this 

scenario was considered during the design phase, and is thus included within the 

overdesign. Although the level of overdesign is consoling, the necessity of such a large 

overdesign should be evaluated, considering the associated increase in capital and 

operations costs. 
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5.7 Scenario 7.5: Maintenance (sleeve valve) test – Normal 
operation – Control 1.0 

 Intended to represent the response of the WA under normal conditions during 

maintenance of combinations of varying permutations of the BPT inlet sleeve valves. 

 One sleeve valve in each BPT out of service, thus eliminating a parallel leg from the 

inlet sleeve valve parallel arrangement. 

 AD BPT level shown for multiple scenarios. All other results for Scenario 7.5a (7.5a – 

one valve in each BPT, normal operation; 7.4a – one valve in each BPT, triple step test; 

7.5b – two valves in each BPT, normal operation; 7.4d – two valves in AD BPT only, 

triple step test) (see Table 10). 

 Reservoir consumer demand draws and trunk main draw schedules are as per normal 

operation. Initial BPT volumes and reservoir levels are set to 70% and 50% 

respectively, valves to their fully open states. All flows are based on 2036 projections. 

 Purpose: 

o Important in asessing the efficacy of the design, due to the emphasis placed on 

this scenario during the design stages. 

o Useful in drawing up SOPs for maintenance, and maintenance schedules. 

Umlaas Road 
Reservoir

Ashle y Road BPT 
(20Ml)

Wyebank Road 
BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 
Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

  

Scenario 7.5a 

Classification Stress – Sleeve 

maintenance 

Start time 00:00 

Reservoir draws Diurnal (all) 

Sleeve valves 

active 

AD - 2 WR - 2 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 1.0 

Imposed (override) reservoir draw 

Reservoir draw as per reservoir control 

scheme 
No reservoir draw (overridden) 
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3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm
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Rates: 2036 

1- Important in assessing 

compliance of the design to 

design specifications and 

intent. 

2- Preparation of SOPs and 

maintenance schedules. 

Initial Conditions: All valves 

open, reservoirs 50 %, and BPTs 

10% full. 
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Globe valve 1
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Sleeve valve 3

Sleeve valve 1

Sleeve valve 1 
inactive

 

Risk: 

1- BPTs stressed when two 

valves are simultaneously 

removed from service 

2- Valve oscillations - wear risk. 

3- Settling level not at 50% level 

–overflow risk. 

AD Initial:  WR Initial 

S1=    0.85     G1=  1   LAD
BPT= 70% of capacity  S1=0.85 G1=1 

S2=    0.85     G2=  1   LWR
BPT=70% of capacity  S2=0.85 G2=1 

S3=    0.85     G3=  1    Lres=50% of capacity       S3=0.85 G3=1 

Other Observations: 

BPTs cope adequately with only two valves, thus 

satisfying design specifications. Low throughputs 

which correspond better to design specifications, 

are achieved when only two valves are active. 

Figure 43 - Scenario 7.5 results overview – Maintenance (sleeve valves) test – Control 1.0. 

b 

c 

d 
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 Although two sleeve valves could satisfy design specifications, a third valve was added to 

the parallel configuration in order to allow for unaffected service delivery, even during 

maintenance. The results of this scenario are therefore critical in the assessment of the 

efficacy of the proposed design.  

 The results presented in Figure 43(a-b) depict a decreased ability of the BPTs to demand 

high inlet flowrates. This results in a lower maximum throughput, for the fully open (initial) 

state, than for the scenarios wherein all three sleeve valves are active (see Figure 42 – 

Scenario 7.3a). This is attributed to the higher resistance presented by the two-leg parallel 

arrangement. This reduced throughput (~561 𝑀ℓ/𝑑𝑎𝑦) corresponds more closely to the 

design intent (~400 𝑀ℓ/𝑑𝑎𝑦). This correspondence desirable in terms of the adequacy of 

the strength of the materials of construction and the calculated maximum fluid velocity. 

 This decreased ability of the BPTs to demand high inlet flows, also allows for the BPT 

levels to adhere more closely to the design NOL level of 50% (see Section 3.2.1). 

 Although a single valve from each BPT is removed from service, the AD BPT is affected 

more, in terms of its ability to establish a settling level. This is caused by the BPT 

interactions resulting from the series arrangement (see Section 5.3), and can be seen by the 

lack of plateaued portions of the AD BPT level curve Figure 43(a), which also indicates a 

heightened sensitivity of the BPT level to downstream demand variations. These 

observations are verified by the results of Scenario 7.4d Figure 43(a), which suggests that 

removing two valves from the AD BPT from service, could result in the AD BPT running 

empty. 

 The results of Scenario 7.5b, which entails the simultaneous removal of two sleeve valves 

in each BPT, demonstrates that the WA system maintains the capability of adequately 

supply. This is assuring, particularly from a service delivery perspective, but again (see 

Section 5.6) raises the question of excessive overdesign. 

 In light of the above, operation under the Scenario 7.5a conditions (two valves 

simultaneously active within each BPT) should thus be considered for normal (everyday) 

operation of the BPT. 
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5.8 Scenario 0x: Normal operation (Base case) test – Control 2.0 

 Base case test with revised control system (see Section 3.3.3) – all conditions 

identical to Scenario 0. 

 Reservoir consumer demand draws determined by the consumer diurnal demand profile 

for the reservoir. 

 Reservoir draw schedules (from the trunk mains) determined by the reservoir control 

system and the reservoir water level. 

 Initial BPT volumes and reservoir levels are set to 70% and 50% respectively, valves 

to their fully open states. 

 All flows are based upon projections for 2036. 

 Purpose: 

o Assess the performance of the new control system in comparison to the 

original control philosophy. 

o Represents the most-encountered operational scenario.  

o Determining the adequacy of the system to cope with the daily exertions, and to 

analyse the system behavior under these conditions 

o Assess the conformity of the system to design expectations 

Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

  

Scenario 0x 

Classification Normal- Base case 

Start time 00:00 

Reservoir draws Diurnal (all) 

Sleeve valves 

active 

AD - 3 WR - 3 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 2.0 

Imposed (override) reservoir draw 

Reservoir draw as per reservoir control 

scheme 
No reservoir draw (overridden) 
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Rates: 2036 

1- Assess the performance of 

the new control system 
2- Represents the most-

encountered operational 

scenario.  

Initial Conditions: All valves 

open, reservoirs 50 %, and BPTs 

10% full. 
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WR BPT level 
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Risk: 

1- Overflow (WR) - Sleeve 

valve response slow, globe 

valves activate too late. 

AD Initial:  WR Initial 

S1=    0.85     G1=  1   LAD
BPT= 70% of capacity  S1=0.85 G1=1 

S2=    0.85     G2=  1   LWR
BPT=70% of capacity  S2=0.85 G2=1 

S3=    0.85     G3=  1    Lres=50% of capacity       S3=0.85 G3=1 

Other Observations: 

Sleeve valve reaction.is too slow to prevent an 

overflow in the WR BPT from the fully open 

(initial) state. Upon establishing controllability, the 

system performance is improved. 

Figure 44 - Scenario 0x results overview – Normal operation (base case) test – Control 2.0. 
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c 
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 The revised control system was proposed in order to allay the concerns regarding the 

oscillatory behavior of the valves due to the localized bang-bang control philosophy of the 

original proposal. The revised control system (Control 2.0) is devised around a central 

deadband region, between 3.5 m and 4.5 m (BPT level), wherein no valve movements are 

required. This is consistent with the design intent, of maintaining a BPT level of 50% 

(~4.0 m). Sleeve valve movements, when prompted to occur, occur individually in 

sequence, with individual movements of 5% (of the valve stroke) per 30 second interval. 

The movement from fully closed to 25% however, occurs in a single interval. The 

arrangement of the valve movements can be seen in Figure 44(c-d). 

 The presence of the deadband can be observed as plateaued regions of the sleeve valves in 

both the AD BPT (Figure 44(c) between 142 mins and 148 mins) and the WR BPT (Figure 

44(c) between 120 mins and 140 mins) 

 The control system, fulfills the intent of preventing the valve oscillations that is a 

distinguishing defect in the original control philosophy. The result is that amount of valve 

movements is significantly decreased (Figure 44(c-d)), and the level curves (Figure 44(a-

b)) are smoother, and lack the plateau regions. 

 The reduction in the amount of requisite valve movements, and the elimination of the 

oscillatory stable state, reduces the generation of water hammer overpressures within the 

pipelines. The calculated waterhammer overpressures for the revised control system under 

Scenario 0x conditions are presented in Figure 45 and Figure 46. 

 Control 2.0 is also able to satisfactorily cope with routine demand variations.  
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Figure 45- Simulation results (Scenario 0x) for the waterhammer transient phenomenon 

at the AD BPT (left axis). Valve positions are represented on the right axis – Control 2.0. 

 

Figure 46- Simulation results (Scenario 0x) for the waterhammer transient phenomenon 

at the WR BPT (left axis). Valve positions are represented on the right axis – Control 2.0. 

 The sequenced arrangement of valve movements, paired with the 5% per interval 

movement specification, causes the control mechanisms to respond sluggishly. Although 

this is desirable, in terms of waterhammer concerns, the overflow situation encountered 

between 15 mins and 40 mins in Figure 44(b) shows that it could result in an overflow, if 

the initial conditions are unfavourable (all valves initially fully open as per test conditions). 

A similar peak is observed at 35 mins for the AD BPT (Figure 44(a)), although an overflow 

is prevented due to the aforementioned interaction between the BPTs and the ability of the 
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WR BPT to demand a higher inlet flow (from the AD BPT) than the AD BPT is able to 

acquire from the supply source. 

 The configuration of the revised control system, that specifies the simultaneous 

intervention of the globe valves only at the high-high level (8.3 m), at the original regulated 

movement rate, is inadequate. The globe valves are unable to prevent the overflow situation 

due to this configuration. Increasing the rate of closure of the globe valves, to mitigate this, 

would drastically increase the magnitude of waterhammer overpressures generated. The 

only feasible adjustment, is thus to decrease the level at which the globe valves begin their 

intervention. The optimum intervention level should be tested through repetitive runs of 

this simulation at varying intervention levels. 

 The revised control system has the ability to allow the globe valves to assume a bigger 

proportion of the throttling function during normal operation. This is seen to occur, due to 

the effect of the sinusoidal-like ripple of the globe valves on the inlet flow to the WR BPT, 

at ~32 mins in Figure 44(a,b,d). This cannot occur within the original control system’s 

operation, as the sleeve valve and globe valve ranges are separated so that all sleeve valves 

are shut before the globe valves are shut (to avoid interference of the globe valves on normal 

control).  
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5.9 Scenario 7.5cx: Maintenance (sleeve valve) test – Control 2.0 

 Sleeve valve maintenance test with revised control system. 

 Intended to represent the response of the WA under normal conditions during 

maintenance of varying permutations of the BPT inlet sleeve valves. 

 Two sleeve valves in the WR BPT out of service, thus eliminating two parallel legs 

from the inlet sleeve valve parallel arrangement – all AD valves active. 

 WR BPT level shown for two normal operation scenarios. All other results for Scenario 

7.5c (two valves only in WR BPT; 7.5a – one valve in each BPT) (see Table 10). 

 Reservoir consumer demand draws and trunk main draw schedules are as per normal 

operation. Initial BPT volumes and reservoir levels are set to 70% and 50% 

respectively, valves to their fully open states. All flows are based on 2036 projections. 

 Purpose: 

o Assess the performance of Control 2.0 under stressed conditions 

o Important in asessing the efficacy of the design, due to the emphasis placed on 

this scenario during the design stages. Also useful in drawing up SOPs for 

maintenance, and maintenance schedules. 

Umlaas Road 
Reservoir

Ashle y Road BPT 

(20Ml)

Wyebank Road 

BPT (20Ml)

1

2

3

4

5

7

6

8

9

Lumped 

Demand

0.53 km 140 0 mm

3.30 km 140 0 mm

1.06 km 140 0 mm

1.14 km 140 0 mm

3.26 km 140 0 mm

0.24 km 140 0 mm

0.43 km 140 0 mm

2.06 km 140 0 mm

8.00  km 140 0 mm

20.01 km 

20.01 km 

  

Scenario 7.5cx 

Classification Stress – Sleeve 

maintenance 

Start time 00:00 

Reservoir draws Diurnal (all) 

Sleeve valves 

active 

AD - 3 WR - 1 

Globe valves 

active 

AD – 3 WR - 3 

Control system Control 2.0 

Imposed (override) reservoir draw 

Reservoir draw as per reservoir control 

scheme 
No reservoir draw (overridden) 



 

137 
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Rates: 2036 
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Control 2.0 under stressed 

conditions  

Initial Conditions: All valves 

open, reservoirs 50 %, and BPTs 

10% full. 
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Risk: 

1- Overflow risk AD BPT – 

level breaches 8.0 m 

AD Initial:   WR Initial 

S1=    0.85     G1=  1   LAD
BPT= 70% of capacity  S1=0.85 G1=1 

S2=    0.85     G2=  1   LWR
BPT=70% of capacity  S2=0.85 G2=1 

S3=    0.85     G3=  1    Lres=50% of capacity       S3=0.85 G3=1 

Other Observations: 

Control system performance satisfactory. WR BPT 

robust enough to cope only one sleeve valve active. 

Control 2.0 slow to react to decreased demand. 

Figure 47 - Scenario 7.5cx results overview– Maintenance (sleeve valves) - Control 2.0. 
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 This scenario was developed to analyse the system behaviour during sleeve valve 

maintenance, or if valve breakages are to occur. 

 The results of Scenario 7.5c are reassuring, except for the overflow risk, in the AD BPT 

(Figure 47a), that is noted at 45 mins. This risk, even though it is due to the valves starting 

fully open, emphasises the aforementioned need (Section 5.9) to improve the sluggish 

response of Control 2.0 to a reduction in downstream demand. The results of Scenario 5.1 

(triple-step stress test - Figure 48) however demonstrate that although the system response 

is slowed, the system is able to manage a sudden decreased demand under with all three 

sleeve and globe valves active (third step), in a better manner than the original control 

philosophy. It is thus noted that the overflow situation encountered in Scenario 0x and 

Scenario 7.5cx is thus a noteworthy exception, but that the revised control system, (Control 

2.0) is better suited to the control of the WA than the original control philosophy. 

No reservoirs drawing All reservoirs drawing No reservoirs drawing

 

Figure 48 - AD BPT results of Scenario 5.1 with Control 2.0. 

 The WR BPT, under Control 2.0, is robust enough to cope adequately with just a single 

inlet sleeve valve (and three globe valves) active, despite the reduced inlet flowrates. It is 

expected that due to the series arrangement, which renders the AD BPT as a supply source 

to the WR BPT and the reservoirs between the two BPTs, that the AD BPT will not perform 

satisfactorily under similar conditions. 

  



 

139 

 

5.10 Darcy-Weisbach calculations (DW) – Control 2.0 

 

Figure 49 - Results of the Darcy-Weisbach (DW) calculation method (solid) for the AD 

BPT under base case conditions (Control 2.0). Results of the regression-method 

calculations are included. 

 

Figure 50 - Results of the Darcy-Weisbach (DW) calculation method (solid) for the WR 

BPT under base case conditions (Control 2.0). Results of the regression-method 

calculations are included. 

The Darcy-Weisbach calculation method results (Figure 49 and Figure 50) were not used in 

the analysis of the results due to the lack of conformity between the two calculation methods. 

As can be observed, from the large discrepancy between the two computations of the initial 

inlet flowrate to the WR BPT, the Darcy-Weisbach method results in an appreciably lower line 

resistance. As a result, the predicted performance of the system is altered drastically. Since the 

WA system is not fully-operational, it was not possible to obtain results for regression to the 

operation of the physical system. It was thus decided that in order to account for all pipe fittings 
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and peculiarities that were accounted for within the EPANET design, and thus to ensure the 

benefit of the analysis to the WA implementation teams, the regression (to the EPANET model 

– see Section 4.5.2.2) calculations were favoured. 

The large discrepancy between the results of the two calculation methods can be noted from 

the flow characteristics of the pipelines in Figure 51. These results correspond to the 

aforementioned finding that the Darcy-Weisbach (1845) method predicts a lower line 

resistance than the k-value regression calculation. 

 

Figure 51 - Comparison of the flow characteristics of the 1 400 mm pipeline when using 

the Darcy-Weisbach and k-value regression calculation methods. 
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6 CONCLUSIONS & 

RECOMMENDATIONS 

6.1 Conclusions 

 Model assumptions: 

o The reservoirs are controlled by a bang-bang control philosophy with upper 

and lower limits at 80% and 20% of the total tank volume respectively. 

o Random asynchronous reservoir intakes constitute “Normal Operation”   

o The reservoir draws from the trunk mains can be represented by binary 

characteristic flows that are unaffected by the pressure within the trunk mains 

o The trunk main’s pressure calculation accuracy would not be significantly 

impacted by simplifying the calculation sequence by decoupling the trunk 

mains pressure profiles from the offtake pressure profiles (calculated fixed 

characteristic flows for when reservoir draws switch on) 

o The trunk main pipeline portion between the two BPTs is similar, in terms of 

its per kilometre line resistance, to the portion from the Umlaas Road reservoir 

to the AD BPT 

o The EPANET model results (residual pressure) will correspond closely to the 

fitted characteristics of Western Aqueduct system 

o A regression type calculation, using a fitted flow coefficient ( 𝑘 ), would 

accurately represent both pipeline portions  

o Sleeve valves will fail in their fully open positions during power outages 

o A combination of both the Joukowsky equation and the Newton’s II would 

enable a reasonable, critical estimation of the waterhammer overpressures in 

the Western Aqueduct system 

 The model can be further customised by updating the following: 

o Consumer demand (diurnal) pattern 

o Reservoir characteristic flows 

o Reservoir control strategies 
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o Data used to obtain the fitted flow coefficient (𝑘), upon commissioning of the 

WA. 

6.1.1 Control 1.0 

Control 1.0 (original) consists of several sub-regions at whose (BPT level) boundaries, valve 

positions are specified. Lower BPT levels allow for higher flow, by successive openings of the 

valves (see Section 3.3.2). 

 The control system acts as a localized bang-bang system. An oscillatory settling level 

is thus formed at a sub-region boundary of the control system. 

o The settling level is dynamic. The sub-region boundary that it will be formed 

at is determined by the magnitude of the demand (outlet) flow. Large demand 

flows necessitate lower settling levels (higher inflows due to opening of 

valves). 

 The original design (Control 1.0) is adequate to cope with normal operational 

conditions in 2036. The following risks are nonetheless existent 

o The maximum system throughput is 8.5 
𝑚3

𝑠
 (734.4

𝑀ℓ

𝑑𝑎𝑦
) greatly exceeds the 

normal maximum design throughput (400
𝑀ℓ

𝑑𝑎𝑦
). This could prove disastrous in 

the event of pipe ruptures, particularly on the trunk main lines.  

o The settling level of the BPTs, until well beyond 2100, is above the design 

normal operating level (NOL). The settling level resides within the upper 20% 

of the BPTs, thus presenting an overflow risk. 

o The globe valves are assigned a duty during normal operation (other than 

power loss scenarios). This is a departure from the intent of the design, and 

could result in a valve-maintenance issue. 

o Valve oscillations (globe valves and sleeve valves) are prevalent, due to the 

structure of the control system – this presents a maintenance risk.  

o The globe valve movements are too delayed to be able to individually assume 

flow control duties upon the loss of electrical power. Due to this delayed 

movements, the globe valves maintain the BPT level at 8.0 m (100%) for any 

demand (outlet) flowrate. This represents an overflow risk, particularly when 

power is restored. 



 

143 

 

o Large flow variations (triple step test – cease all demands) cause the BPT 

levels to breach the 100% (8.0 m) level. This represents an overflow risk.  

 High waterhammer overpressures (~8 bar) are predicted by the Joukowsky equation 

and the steel pipe analogy. Although these methods are inaccurate, the magnitude of 

the predictions (>40% of design pressure) is reason for concern. 

 The AD BPT is less robust than the WR BPT due to the series arrangement of the 

BPTs. The WR BPT thus always leads the AD BPT. 

 Based on the forecasted y/y consumer demand growth factors, the AD BPT is 

expected to be unable to meet demand in the year 2110, and the WR BPT in 2154. 

 The WA is able to cope adequately with all connected reservoirs drawing 

simultaneously (maximum forecasted demand on the WA). 

 Simultaneous single BPT compartment maintenance affects the performance of the 

WA minimally, by increasing the sensitivity of the BPT level to downstream demand 

variations.  

o Normal operation with one BPT compartment in the AD  BPT and WR BPT can 

be considered 

 The WA is able to sustain its performance when simultaneous single and double sleeve 

valve maintenance is carried out in both BPTs. 

o  Due to the series arrangement of the BPTs however, the AD BPT will fail if 

two sleeve valves are out of service only in the AD BPT (only if all valves in 

WR are active), and elevated demands are encountered downstream 

(Scenario 7.4d). The reverse is does not hold for WR.  

o The WA is better suited (in terms of the maximum design throughput and NOL) 

to be operated with just two sleeve valves active on each BPT.  

6.1.2 Control 2.0 

Control 2.0 (2016) is a revised control philosophy uses a true deadband. No valve movements 

are specified within the deadband zone (between 3.5 m and 4.0 m). Above the upper deadband 

limit (4.0 m), the highest position sleeve valve is prompted to close 5% (or 25% if moving to 

0% from 25% or vice versa). The opposite holds true when the level falls below 3.5 m. Globe 

valves only intervene above the high-high (8.3 m) level (see Section 3.3.3). 

 The revised control system (Control 2.0) is more robust and provides better control of 

the WA 
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o It eliminates the oscillatory settling levels and the accompanying valve 

oscillations and maintenance concerns 

o The NOL is better adhered to, resulting in a lower overflow risk 

o A decreased number of valve movements are commanded, thus decreasing 

maintenance requirements on the valves 

o It is however susceptible to overflows due to the slowed valve responses. 

 An overflow risk is present if the initial conditions for Scenario 0x (BPTs 70% full, all 

valves fully open) are encountered. The overall susceptibility of the WA with Control 

2.0, is less than that of the WA with Control 1.0. This is due to the improved ability of 

the WA to maintain the 50% NOL with Control 2.0. 

6.2 Recommendations 

 Adopt the revised control system for implementation 

 Install automated override controls to prevent operation at maximum throughput in the 

event of trunk main ruptures. 

 The possibility of using just two sleeve valves at the entrance of each BPT, during 

normal operation, should be considered. 

 The k-parameter (fitted pipeline flow coefficient) should be revised to use measured 

data upon the commissioning of the WA, as it greatly affects the predicted performance 

of the model 

 Reservoir draw schedules should be measured accurately, and updated as they greatly 

affect the simulation results. 

 Valve duties should be alternated to avoid excessive wear on active valves 

 Detailed surge analyses should be carried out, as the results of the preliminary tests are 

deemed to be a concern 

 The possibility of increasing the movement rate of the globe valves (Control 1.0), 

decreasing the high-high level (globe valves intervention level – Control 2.0) and 

increasing the sleeve valve movement per 30s (5% - Control 2.0) should be considered 

in tandem with the results of the detailed surge analysis. 

 The possibility of decreasing the inlet resistance to the AD BPT should be considered, 

in order to decrease the susceptibility of the AD BPT to downstream demands. This 

could aid in speeding up the response of the AD BPT level to downstream demand 

fluctuations, by increasing the achievable inlet flowrate. 
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 Revise the high-high level, at which the globe valves intervene (both control systems). 

The current settings do not allow the globe valves adequate time to prevent overflows 

under specific stressed conditions (BPT 50% full with all valves fully open). 

 SOPs should be constructed using the results presented above. This includes operator 

duties for power outages (e.g. adjust the sleeve valve position to x% by turning the 

hand-wheels etc.), and emergency preparedness training (wildfires etc.). Maintenance 

schedules can also be tested through simulations. 
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APPENDIX A: SUPPORTING MATERIALS 

 

Figure A1- Moody (1944) diagram for the friction factor. The (sloping/horizontal) lines 

are lines of constant pipeline roughness. The abscissa corresponds to the Reynolds 

number of the fluid and the ordinate (left) is the dimensionless friction factor. 



 

A2 

 

 

Figure A2 - Hourly demand (normalised) hydrograph for Sunninghill (urban) 

(Stephenson, 2012). 

 

Figure A3 - Hourly demand (normalised) hydrograph for Rabie Ridge  (rural) 

(Stephenson, 2012). 
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Figure A4 - Hourly demand (normalised) hydrograph for Aeroton (industrial) 

(Stephenson, 2012). 
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Figure A5 - Valve characteristics and Kv factor for Bermad Globe valves (BERMAD., 

2009). 
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APPENDIX B – WESTERN AQUEDUCT DATA 

Table B1 - Material of construction and wall thickness information for the WA pipes 

(Van Rooyen, 2015). 

 

 

 

 

Pipe size (DN) Steel Grade Wall Thickness (mm) 

323  X42   4.5mm  

406  X42   4.5mm  

508  X42   4.5mm  

508  300WA   8mm  

610  X42   4.5mm  

610  X42   6mm  

610  X42   8mm  

1016  X42   8mm  

1016  X52   8mm  

1016  X52   10mm  

1016  X52   12mm  

1016  X65   12mm  

1016  X65   13.5mm  

1422  X42   10mm  

1422  X52   10mm  

1422  X52   12mm  

1422  X65   12mm  

1422  X65   13.5mm  

1626  X42   12mm  

1626  X52   12mm  

1626  X65   12mm  

1626  X65   13.5mm  
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Figure B1 - EWS Western system layout (Supplied by EWS). 
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Figure B2 - Example of the time-series representation of one the Emberton reservoirs 

level from the telemetry system. 
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Figure B3 - Example of the procedure followed to obtain an estimate of the characteristic 

flow of one of the Emberton reservoirs.
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APPENDIX C – EXCEL PRESENTATION GRAPHIC 

 

Figure C1 - Microsoft Excel presentation graphic for each simultation run. The above 

figure corresponds to the results of Scenario 0x. 



 

D1 

 

APPENDIX D – PROGRAM (MATLAB) CODE  

clc 

clear all 

close all 

global p globeparam 

  

  

%% time configuration  + increments 

totaltime=24; %time in hours 

totaltimesec=totaltime*3600; %total time in seconds 

increments=totaltimesec/60; % required no of increments 

deltat=totaltimesec/increments; %- of time increments in seconds 

tcount=0; %initialize a time-based counter 

starttime=00; %use 24h clock to set start time 

year=2036; 

  

%% Initialize vectors for speed 

Fdemand=zeros(floor(increments),5); 

ADGVpos=zeros(floor(increments),3); 

ADSVpos=zeros(floor(increments),3); 

WRGVpos=zeros(floor(increments),3); 

WRSVpos=zeros(floor(increments),3); 

P1a=zeros(1,floor(increments)); 

Ff1=zeros(1,floor(increments)); 

Ff2=zeros(1,floor(increments)); 

Ff3=zeros(1,floor(increments)); 

Ff=zeros(1,floor(increments)); 

dpgvA=zeros(1,floor(increments)); 

Pash=zeros(1,floor(increments)); 

Presash=zeros(1,floor(increments)); 

line1pdrop=zeros(1,floor(increments)); 

Pintwye=zeros(1,floor(increments)); 

Pavawye=zeros(1,floor(increments)); 

Ffw=zeros(floor(increments),5); 

FC2=zeros(1,floor(increments)); 

FC3=zeros(1,floor(increments)); 

FC4=zeros(1,floor(increments)); 

FC5=zeros(1,floor(increments)); 

FC6=zeros(1,floor(increments)); 

F1w=zeros(floor(increments),1); 



 

D2 

 

F2w=zeros(floor(increments),1); 

F3w=zeros(floor(increments),1); 

dpgv2=zeros(1,floor(increments)); 

PN1=zeros(1,floor(increments)); 

PN2=zeros(1,floor(increments)); 

PN3=zeros(1,floor(increments)); 

PN4=zeros(1,floor(increments)); 

pdropsWR=zeros(floor(increments),5); 

WRresdraws=zeros(floor(increments),5); 

Foutashley=zeros(floor(increments),5); 

Fdemandla=zeros(floor(increments),4); 

AWRresdraws=zeros(floor(increments),4); 

ADbptvol=zeros(1,floor(increments)); 

WRbptvol=zeros(1,floor(increments)); 

WRoutflow=zeros(1,floor(increments)); 

ADbptlevel=zeros(1,floor(increments)); 

WRbptlevel=zeros(1,floor(increments)); 

timeplot=zeros(1,floor(increments)); 

ADdPKE=zeros(1,floor(increments)); 

WRdPKE=zeros(1,floor(increments)); 

ADdPKE3=zeros(1,floor(increments)); 

WRdPKE3=zeros(1,floor(increments)); 

ADdPKE4=zeros(1,floor(increments)); 

WRdPKE4=zeros(1,floor(increments)); 

ff=[0 0 0 0 0]; 

%% initialize vectors (demand) 

%%System and BPT information 

lengthURAD=40010; %m 

totalvolume=[2300 4500 5000 6819 4546]; % volume of reservoirs between ashley drive and wyebank BPTs m^3 

areaw=[396.689 11.628 647.501 1538.528 626.171]; % areas of reservoirs between ashley drive and wyebank 
BPTs m^2 

depthw=totalvolume./areaw; 

hilimit=depthw.*.8; % dadband high level limit of reservoirs between ashley drive and wyebank BPTs m 

lolimit=depthw.*.2; % deadband low level limit of reservoirs between ashley drive and wyebank BPTs m 

activew=ones(1,5); % activator vector that toggles to shutoff or turn on characteristic flows to the reservoirs 

diamw=ones(1,5)*1.4; % pipe diameters in meters for pipes between ashley drive and wyebank BPTs in the line 
leading to Wyebank ONLY m 

lengthw=[578 3300 1060 1140 3261.27];% pipe lengths in meters for pipes between ashley drive and wyebank 
BPTs in the line leading to Wyebank ONLY m 

volumew(1,:)=totalvolume.*0.5; % volume of water in the reservoirs between ashley drive and wyebank BPTs m^3 

activew1=zeros(1,5); % activator vector that toggles to shutoff or turn on characteristic flows to the reservoirs 

levelw(1,:)=volumew(1,:)./areaw;  % volume of water in the reservoirs between ashley drive and wyebank BPTs, 
results from the volume of water and area m 
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density=998.2; %density of fluid - kg/m^3 

viscosity=8.9e-4; %viscosity of fluid - Pa.s 

ADVol=20e3; % Volume of AD BPT- total fixed volume 

WRVol=10e3; % Volume of WR BPT- total fixed volume 

fillfact=.7; %Initial fill level for both BPTs 

ADbptvol(1)=ADVol*fillfact; %Ashley Drive BPT volume filled m^3 

WRbptvol(1)=WRVol*fillfact;%Wyebank BPT volume filled m^3 

wyearea=26*26*2;%Ashley Drive BPT area m^2 

bptarea=2688;%Wyebank BPT area m^2 

ADbptlevel(1)=ADbptvol(1)/bptarea; % initial fill height of AD BPT 

WRbptlevel(1)=WRbptvol(1)/wyearea; % Initial fill height of WR BPT 

Kv=7350;  %m^3/hr/bar^0.5 globe valve coefficient - Bermad 

%%AD BPT 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%AFTER WYEBANK 

totalvolumela=[5000 4540 6800 4929]; % volume of reservoirs after wyebank BPT m^3 

activela=[1 1 1 1]; %activator for after wyebank 

activela1=[1 1 1 1]; %activator for after wyebank 

areala=[623.131 784.517 17.63 1036]; % areas of reservoirs after wyebank BPTs m^2 

depthla=totalvolumela./areala; 

hilimitla=depthla.*.8; % deadband high level limit of reservoirs after wyebank BPT m 

lolimitla=depthla.*.2; % deadband low level limit of reservoirs after wyebank BPT m 

volumela(1,:)=totalvolumela.*0.5; % volume of water in the reservoirs after wyebank BPT m^3 

levella(1,:)=volumela(1,:)./areala;  % volume of water in the reservoirs after wyebank BPT, results from the volume 
of water and area m 

lengthla=[238.7 429 206.2 8000]; %length of pipe segments after the WR BPT 

%AFTER WYEBANK 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%] 

%% Physical parameters 

poissteel=.295; 

bulkmsteel=203.3966e9; % Pa 

bulkmwater=2.15e9; %Pa 

pipethick=10e-3; %m 

%% initiallize valve positions 

xg(1,:)=[1 1 1];  %Ashley drive globe valves (1,2,3) 

xs(1,:)=[1 1 1]*.85; %Ashley drive sleeve valves (1,2,3) 

xgw(1,:)=[1 1 1]; %Wyebank globe valves (1,2,3) 

xsw(1,:)=[1 1 1]*.85; %Wyebank sleeve valves (1,2,3) 
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%% initialize flow variables + set tolerance +  initialize index 

fchar=adwbflow(year); %characteristic flows to resivoirs between the  BPTs 

fcharla=wbflow(year); %characteristic flows to resivoirs after WR BPT 

  

  

%% Regression Block (OPEN) 

  

%%%%%%%%%%%%%%%%%%%% Sleeve valve regression 

% READ off points from the supplied graphs (report via email), x and y 

% x-vector 

xx1=[0 60 120 180 240]; 

  

%%measurements of y-vector 

yy1=[0 9 13 15 18]; 

yy2=[0 17 23 28 33]; 

yy3=[0 24 33 41 47.5]; 

yy4=[0 30 42 52 61]; 

yy5=[0 36 51 62 72]; 

yy6=[0 41 59 71.5 83]; 

yy7=[0 46 65 80 93]; 

yy8=[0 51 71 87 102]; 

yy9=[0 55 76 93 109]; 

yy10=[0 58 81 99 115]; 

%values of y-vector corresp. to x-vector 

y1=yy1./31; 

y2=yy2./31; 

y3=yy3./31; 

y4=yy4./31; 

y5=yy5./31; 

y6=yy6./31; 

y7=yy7./31; 

y8=yy8./31; 

y9=yy9./31; 

y10=yy10./31; 

  

%Use obtained co-ordinates to regress to a polynomial via matrix regression 

%regression function contained in sleeve1linroot function file 

p(1,:)=sleeve1linroot(xx1,y1); 

p(2,:)=sleeve1linroot(xx1,y2); 

p(3,:)=sleeve1linroot(xx1,y3); 

p(4,:)=sleeve1linroot(xx1,y4); 
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p(5,:)=sleeve1linroot(xx1,y5); 

p(6,:)=sleeve1linroot(xx1,y6); 

p(7,:)=sleeve1linroot(xx1,y7); 

p(8,:)=sleeve1linroot(xx1,y8); 

p(9,:)=sleeve1linroot(xx1,y9); 

p(10,:)=sleeve1linroot(xx1,y10); 

%% K-value (line characteristics) Regressions 

%Find the k value for the inlet system to ashley drive 

%USE AVERAGE TO DECREASE ERROR 

otf=(62.7/185.9)*(1+(1.529641948/100))^(year-2015); 

%off take fraction in the supply line, assumed to be halfway to the break pressure tank (ashley drive) 

%unit adjustment factor for regression 

factor=(8138+((7/8)^5)*(12055+((1-otf)^2)*11345)+((1-otf)^2)*8848); 

% Four k-value regressions (incl. 1.5 multiple of peak flow) 

kin1=(194-114.91)*24^2*3.6^2/278.8^2/factor; 

kin2=(194-154.87)*24^2*3.6^2/factor/185.9^2; 

kin3=(194-77.42)*24^2*3.6^2/factor/373.1^2; 

kin4=(194-140.82)*24^2*3.6^2/factor/223.1^2; 

%Average k-factor 

kin=0.25*(kin1+kin2+kin3+kin4); 

%%  Globe valve characteristics regression 

%regress % open to kv % graph - see BERMAD VALVES literature 

kvperc=[0.2 0.8 1]; 

globex=[0.1 0.7 1]; 

globeparam=sleeve1(kvperc,globex); 

%%Regression Block (CLOSE) 

  

%Calculate the a parameter for the Joukowsky equation 

ajou=sqrt(1/((density/bulkmwater)+(density*diamw(1)*(1-poissteel^2)/(bulkmsteel*pipethick)))); % Wave 
propogation velocity for joukowsky equation 

  

%% Timeloop (OPEN) 

for time=1:increments 

    %% Set the time (OPEN) 

    tcount=tcount+1; % Keep a counter to store variables 

    cumulativetime=tcount*deltat; % amount of time elapsed in seconds 

    time=starttime+cumulativetime/3600; % to give time, 

    %e.g. if time is 21:30, display will be 21.5 

    if time>24 

        time=time-24; 

    end %clock reset for 24 hour clock 

    %%Set the time (CLOSED) 
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    %% Set Demands and volumes based on time (OPEN) 

    Fdemand(tcount,:)=demand(time,year); %set vector of demands 

    %for reservoirs leading to wyebank from ashley drive 

    Fdemandla(tcount,:)=demand2(time,year); %set vector of demands 

    %for reservoirs leading to wyebank from ashley drive 

     

    WRresdraws(tcount,:)=activew.*fchar; % Set reservior draws from the 

    %trunk mains - After WR BPT 

     

    if tcount>1 

        %Euler integration for the BPT Volumes 

        ADbptvol(tcount)=ADbptvol(tcount-1)+((Ff(tcount-1)-FC2(tcount-1))*deltat); 

        WRbptvol(tcount)=WRbptvol(tcount-1)+((FC6(tcount-1)-WRoutflow(tcount-1))*deltat); 

        %BPT level based upon the Euler method 

        ADbptlevel(tcount)=ADbptvol(tcount)/bptarea; 

        WRbptlevel(tcount)=WRbptvol(tcount)/wyearea; 

        %Reservoir integrations with external function (Euler) 

        %Reservoir LEVEL AND AREA between Ashley drive and wyebank BPTs 

        volumew(tcount,:)=voladd1(volumew((tcount-1),:),fchar,activew1(tcount-1,:),Fdemand(tcount-
1,:),deltat,totalvolume); 

        levelw(tcount,:)=volumew(tcount,:)./areaw; 

        volumela(tcount,:)=voladd1(volumela((tcount-1),:),fcharla,activela1(tcount-1,:),Fdemandla(tcount-
1,:),deltat,totalvolumela); 

        levella(tcount,:)=volumela(tcount,:)./areala;          %%Reservoir LEVEL AND AREAafter wyebank BPT 

         

         

         

         

        %% Wyebank Road activator - for reservoir draws from trunk mains 

        %%according to requirements of individual control systems 

         

        % use binary indices to determine offtake flows, index activated by 

        % function call 

         

        %%&&**(())%%] 

        if tcount==1 

            activew1=activator(levelw(tcount,:),lolimit,hilimit,activew);%% activator toggles the elements of activew 
between 0 and 1 to set side-flows 

        else 

            activew1(tcount,:)=activator(levelw(tcount,:),lolimit,hilimit,activew1(tcount-1,:)); 
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        end 

        % activew1(tcount,:)=[0 0 0 0 0]; % manual override for imposed flow 

        %(manual override currenly inactive - base case) 

        %     %&&**(())%%] 

         

        %% Wyebank Road activator 

         

        %% After Wyebank Road activator 

        %%&&**(())%%] 

        if tcount==1 

            activela1=activator(levella(tcount,:),lolimitla,hilimitla,activela);%% activator toggles the elements of activew 
between 0 and 1 to set side-flows 

        else 

            activela1(tcount,:)=activator(levella(tcount,:),lolimitla,hilimitla,activela1((tcount-1),:)); 

        end 

        % activela1(tcount,:)=[0 0 0 1]; 

        %%&&**(())%%] 

        %% After Wyebank Road activator 

         

         

        %% Set Demands and volumes based on time (CLOSED) 

         

        %%Valve positioner (OPEN) 

        % valve positions already initialized - ASHLEY DRIVE 

        %start 2 layer position stack 

        % Use external function to set valve position based on level in BPT 

        %Valve position set in layer 2 

        if tcount>1; 

            xg(1,:)=xg(2,:); 

            xs(1,:)=xs(2,:); 

        end 

        if tcount==1 

            xg(2,:)=xg(1,:); 

            xs(2,:)=xs(1,:); 

        else 

            xs(2,:)=positionerrampnew(ADbptlevel(tcount),xs(1,:),deltat); 

            xg(2,:)=globepositionerrampnew(ADbptlevel(tcount),xg(1,:),deltat); 

        end 

        ADGVpos(tcount,:)=xg(2,:); 

        ADSVpos(tcount,:)=xs(2,:); 
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        %stack valve positions for the positioner function -WYEBANK ROAD 

        if tcount>1 

            xgw(1,:)=xgw(2,:); 

            xsw(1,:)=xsw(2,:); 

        end 

         

        if tcount==1 

            xgw(2,:)= xgw(1,:); 

            xsw(2,:)=xsw(1,:); 

        elseif tcount>1 

            xgw(2,:)=globepositionerrampnew(WRbptlevel(tcount),xgw(1,:),deltat); 

            xsw(2,:)=positionerrampnew(WRbptlevel(tcount),xsw(1,:),deltat); 

        end 

         

        WRGVpos(tcount,:)=xgw(2,:); 

        WRSVpos(tcount,:)=xsw(2,:); 

        %%Valve positioner (CLOSED) 

         

         

         

        %% Parameter regression (OPEN) 

        %%%% ASHLEY DRIVE 

        % Get parameters for Newton Raphson loop for this time step 

        A(1)=(((3600/Kv/(globeparam(1)*(xg(2,1)^2)+globeparam(2)*xg(2,1)))^2)*10^5/9.81e3); 

        A(2)=(((3600/Kv/(globeparam(1)*(xg(2,2)^2)+globeparam(2)*xg(2,2)))^2)*10^5/9.81e3); 

        A(3)=(((3600/Kv/(globeparam(1)*(xg(2,3)^2)+globeparam(2)*xg(2,3)))^2)*10^5/9.81e3); 

         

        % f(x) for each globe valve 

        B(1)=globeparam(1)*(xg(2,1)^2)+globeparam(2)*xg(2,1); 

        B(2)=globeparam(1)*(xg(2,2)^2)+globeparam(2)*xg(2,2); 

        B(3)=globeparam(1)*(xg(2,3)^2)+globeparam(2)*xg(2,3); 

         

        %conversion factor for Kv into %m^3/s/m(water)^0.5 

        C=sqrt(9806.38)/(3600*sqrt(1e5)); 

         

        % Add Cv for valves in parallel 

        D=Kv*C*(B(1)+B(2)+B(3)); % Identical valves in parallel - m^3/s/m(water)^0.5 
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        % Cv*f(x)=B*C*Kv 

        %deltaPglobevalve=(F/Cv/f(x))^2=(F/B/C/Kv)^2 

        % total deltaP for globe valves=(F/D)^2 

         

         

        % interpolate using valve positions to obtain accurate reults - use 

        % existing functions 

        v1a(1)=valveinterpsigsqlin(xs(2,1),xx1(1)); 

        v1a(2)=valveinterpsigsqlin(xs(2,1),xx1(2)); 

        v1a(3)=valveinterpsigsqlin(xs(2,1),xx1(3)); 

        v1a(4)=valveinterpsigsqlin(xs(2,1),xx1(4)); 

        v1a(5)=valveinterpsigsqlin(xs(2,1),xx1(5)); 

        v1=sleeve1linroot(xx1,v1a); 

         

        v2a(1)=valveinterpsigsqlin(xs(2,2),xx1(1)); 

        v2a(2)=valveinterpsigsqlin(xs(2,2),xx1(2)); 

        v2a(3)=valveinterpsigsqlin(xs(2,2),xx1(3)); 

        v2a(4)=valveinterpsigsqlin(xs(2,2),xx1(4)); 

        v2a(5)=valveinterpsigsqlin(xs(2,2),xx1(5)); 

        v2=sleeve1linroot(xx1,v2a); 

         

        v3a(1)=valveinterpsigsqlin(xs(2,3),xx1(1)); 

        v3a(2)=valveinterpsigsqlin(xs(2,3),xx1(2)); 

        v3a(3)=valveinterpsigsqlin(xs(2,3),xx1(3)); 

        v3a(4)=valveinterpsigsqlin(xs(2,3),xx1(4)); 

        v3a(5)=valveinterpsigsqlin(xs(2,3),xx1(5)); 

        v3=sleeve1linroot(xx1,v3a); 

        %%%% ASHLEY DRIVE 

         

         

        %%%% WYEBANK ROAD 

        Aw(1)=(((3600/Kv/(globeparam(1)*(xgw(2,1)^2)+globeparam(2)*xgw(2,1)))^2)*10^5/9.81e3); 

        Aw(2)=(((3600/Kv/(globeparam(1)*(xgw(2,2)^2)+globeparam(2)*xgw(2,2)))^2)*10^5/9.81e3); 

        Aw(3)=(((3600/Kv/(globeparam(1)*(xgw(2,3)^2)+globeparam(2)*xgw(2,3)))^2)*10^5/9.81e3); 

         

         

        % f(x) for each valve 

        Bw(1)=globeparam(1)*(xgw(2,1)^2)+globeparam(2)*xgw(2,1); 

        Bw(2)=globeparam(1)*(xgw(2,2)^2)+globeparam(2)*xgw(2,2); 

        Bw(3)=globeparam(1)*(xgw(2,3)^2)+globeparam(2)*xgw(2,3); 
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        %conversion factor for Kv into %m^3/s/m(water)^0.5 

        Cw=sqrt(9806.38)/(3600*sqrt(1e5)); 

         

        % Add Cv for valves in parallel 

        Dw=Kv*Cw*(Bw(1)+Bw(2)+Bw(3)); % Identical valves in parallel - m^3/s/m(water)^0.5 

        % Cv*f(x)=B*C*Kv 

        %deltaPglobevalve=(F/Cv/f(x))^2=(F/B/C/Kv)^2 

        % total deltaP for globe valves=(F/D)^2 

         

        %Re-regression to get analytical equation based on current valve 

        %positions 

        v1aw(1)=valveinterpsigsqlin(xsw(2,1),xx1(1)); 

        v1aw(2)=valveinterpsigsqlin(xsw(2,1),xx1(2)); 

        v1aw(3)=valveinterpsigsqlin(xsw(2,1),xx1(3)); 

        v1aw(4)=valveinterpsigsqlin(xsw(2,1),xx1(4)); 

        v1aw(5)=valveinterpsigsqlin(xsw(2,1),xx1(5)); 

        v1w=sleeve1linroot(xx1,v1aw); 

        %     v1wsl=sleeve1sigstraightline(xx1,v1aw); % option for straight line 

        %     regression (y=mx+c) 

         

        v2aw(1)=valveinterpsigsqlin(xsw(2,2),xx1(1)); 

        v2aw(2)=valveinterpsigsqlin(xsw(2,2),xx1(2)); 

        v2aw(3)=valveinterpsigsqlin(xsw(2,2),xx1(3)); 

        v2aw(4)=valveinterpsigsqlin(xsw(2,2),xx1(4)); 

        v2aw(5)=valveinterpsigsqlin(xsw(2,2),xx1(5)); 

        v2w=sleeve1linroot(xx1,v2aw); 

        %     v2wsl=sleeve1sigstraightline(xx1,v2aw); 

         

         

        v3aw(1)=valveinterpsigsqlin(xsw(2,3),xx1(1)); 

        v3aw(2)=valveinterpsigsqlin(xsw(2,3),xx1(2)); 

        v3aw(3)=valveinterpsigsqlin(xsw(2,3),xx1(3)); 

        v3aw(4)=valveinterpsigsqlin(xsw(2,3),xx1(4)); 

        v3aw(5)=valveinterpsigsqlin(xsw(2,3),xx1(5)); 

        v3w=sleeve1linroot(xx1,v3aw); 

        %     v3wsl=sleeve1sigstraightline(xx1,v3aw); 

        %%%% WYEBANK ROAD 
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        %%Parameter regression  (CLOSED) 

         

        %% Newton Raphson solution loop (OPEN) 

        %initial guesses for Pint - CHANGES EVERY TIME STEP - USE PREVIOUS 

        %VALUES AFTER FIRST STEP 

        if tcount==1 

            P1a(tcount)=50;% m of head 

        else 

            P1a(tcount)=Pash(tcount-1); % m of head 

            %set initial guess to last convergence value to increase speed 

        end 

         

        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %ASHLEY DRIVE TOLERANCES 

         

        %% set tolerances for loop and sub-loops 

        % initialize loop variables and index (Ashley Drive) 

        tol1=.001; 

        crita=5; 

        index=0; 

        F1a=0; 

        F1b=0; 

        F2a1=0; 

        F2a2=0; 

        F2a3=0; 

        F2a=0; 

        F2b1=0; 

        F2b2=0; 

        F2b3=0; 

        F2b=0; 

         

        %%Wyebank Road 

        tol1w=1e-3; 

        critatw=100; 

        indextw=0; 

        %% ASHLEY DRIVE TOLERANCES 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %%&&**(())%%] 

        otfi=otf; % set lumped draw to draw according to time-based schedule 

        %%&&**(())%%] 

        while crita>tol1 

            index=index+1; % index to count number of cycle 

            movefract=1; %percentage - movement from current point (Newton-Raphson) 

            P1b(index)=P1a(index)*(1+movefract/100);% New Pint for % movement 

            %Calculate flows in lines upstream to intermediate point between 

            %the globe and sleeve valves 

            %based upon current pressure, line and globe valve chraracteristics 

            F1a(index)=sqrt((194-ADbptlevel(tcount)-P1a(index))/((kin*(1+(1-otfi)^2)+D^-2))); 

            %As above, for pressure % away from calculated pressure 

            F1b(index)=sqrt((194-ADbptlevel(tcount)-P1b(index))/((kin*(1+(1-otfi)^2)+D^-2))); 

             

            %Calculate flow through sleeve valves based on current pressure 

            %(individual) 

            F2a1(index)=v1(1)*(P1a(index)/100)+v1(2)*(P1a(index)/100)^0.5; 

            F2a2(index)=v2(1)*(P1a(index)/100)+v2(2)*(P1a(index)/100)^0.5; 

            F2a3(index)=v3(1)*(P1a(index)/100)+v3(2)*(P1a(index)/100)^0.5; 

            %Sum individual flows to get total flow through sleeve valves 

            F2a(index)=F2a1(index)+F2a2(index)+F2a3(index); 

            %Calculate flow through sleeve valves based on pressure 

            % away from calculated pressure (individual) 

            F2b1(index)=v1(1)*(P1b(index)/100)+v1(2)*(P1b(index)/100)^0.5; 

            F2b2(index)=v2(1)*(P1b(index)/100)+v2(2)*(P1b(index)/100)^0.5; 

            F2b3(index)=v3(1)*(P1b(index)/100)+v3(2)*(P1b(index)/100)^0.5; 

            %Sum individual flows to get total flow through sleeve valves 

            F2b(index)=F2b1(index)+F2b2(index)+F2b3(index); 

             

            %Newton-Raphson convergence criteria - for calc and  %move pressures 

            crita= (F1a(index)-F2a(index)); 

            critb= (F1b(index)-F2b(index)); 

             

            %Calculate the gradient for the Newton-Raphson next guess 

            gradient=(critb-crita)/(P1b(index)-P1a(index)); 

            %Over relaxation parameter to avoid overshoots and speed-up 

            %convergence 

            slowfract=tol1*5; 

            %Next guess according to Newton-Raphson algorithm 
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            P1a(index+1)=P1a(index)-((crita/gradient)*slowfract); 

        end 

         

        % Store the total flow and the flow through each leg 

        Ff1(tcount)=F2a1(end); 

        Ff2(tcount)=F2a2(end); 

        Ff3(tcount)=F2a3(end); 

        Ff(tcount)=F2a(end); % Flow through to AD 

         

        dpgvA(tcount)=Ff(tcount)^2/(D^2);%Pressure loss through globe valves 

         

        Pash(tcount)=P1a(index); % Pressure between GV and \SV 

         

        Presash(tcount)=Pash(tcount)+dpgvA(tcount); %Pressure available just 

        %before the globe valves - entrance to BPT 

         

        line1pdrop(tcount)=194-Presash(tcount);%Line pressure loss 

         

        %Negative protection reset 

        if dpgvA>194 

            line1pdrop(tcount)=0; 

        end 

        %% BEGIN WYEBANK ROAD BPT CALCULATIONS 

        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %%if statement used to set initial guess to previously calculated 

        %%value, to lend speed to the calculation 

        if tcount==1 

            P1atw(1)=60; %initial guess for intermediate pressure 

        else 

            P1atw(1)=Pintwye(tcount-1); 

        end 

         

        while critatw>tol1w 

            indextw=indextw+1; 

             

            %Green portion - inactive - Darcy-Weisbach routine 

            %     while critwa>tol1w 

            %         indexw=indexw+1; 
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            %        %start pdrop calc involving intermediate flow and lambda calcs 

            % 

            %         movefractw=.1; %percentage 

            %         ffb(indexw,5)=ff(indexw,5)*(1+movefractw/100); %%%%%%%%%%%%%% 

            %         CALCULATE FLOWS IN LINES LEADING TO WYEBANK FROM ASHLEY 

            %         %%%%%%%%%%%%%% DRIVE 

            %         ff(indexw,4)=ff(indexw,5)+activew1(5)*fchar(5); % begin 

            %         calculation of intermediate flows based on gusesses 

            %         ff(indexw,3)=ff(indexw,4)+activew1(4)*fchar(4); 

            %         ff(indexw,2)=ff(indexw,3)+activew1(2)*fchar(2)+activew1(3)*fchar(3); 

            %         ff(indexw,1)=ff(indexw,2)+activew1(1)*fchar(1); 

            deltapstatic=184-WRbptlevel(tcount); %meters head - design report 

            epsilon=0.015e-3; %m - Pipe roughness 

            frictionguess=0.1; %intial guess of the friction factor-for 

            %successive substitution routine 

             

            %find the friction factor (COLEBROOK) 

            %         frictionfact=lambdafun1(epsilon,diamw,density,ff(indexw,:),viscosity,frictionguess); 

            %find pressure drops based on friction factor 

            %         pdrops=deltap1(density, frictionfact, lengthw, ff(indexw,:), diamw); 

            %         pdrop=sum(pdrops)/9.81e3; % combined pressure drop in m 

            %         pav=deltapstatic-pdrop; %m of pressure available at entrance to wyebank 

            % 

            %         if pav<0 

            %             pav=0; 

            %         end 

            %         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

            %         ffb(indexw,4)=ffb(indexw,5)+activew1(5)*fchar(5); % begin calculation of intermediate flows based 
on gusesses 

            %         ffb(indexw,3)=ffb(indexw,4)+activew1(4)*fchar(4); 

            %         ffb(indexw,2)=ffb(indexw,3)+activew1(2)*fchar(2)+activew1(3)*fchar(3); 

            %         ffb(indexw,1)=ffb(indexw,2)+activew1(1)*fchar(1); 

            %         frictionfactb=lambdafun1(epsilon,diamw,density,ffb(indexw,:),viscosity,frictionguess); 

            %         pdropsb=deltap1(density, frictionfactb, lengthw, ffb(indexw,:), diamw); 

            %         pdropb=sum(pdropsb)/9.81e3; % combined pressure drop in m 

            %         pavb=deltapstatic-pdropb; 

            % 

            %         if pavb<0 

            %             pavb=0; 

            %         end 
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            %         GVa=(ff(indexw,5)/Dw)^2; 

            %         GVb=(ffb(indexw,5)/Dw)^2; 

            %         pintw=pav-GVa; 

            %         PintwA(indexw)=pintw; 

            %         pintwb=pavb-GVb; 

            %         PintwB(indexw)=pintwb; 

             

             

            %         if PintwA(indexw)<1e-6 

            %             PintwA(indexw)=1e-6; 

            %         end 

            %          if PintwB(indexw)<1e-6 

            %             PintwB(indexw)=1e-6; 

            %         end 

             

            % 

            %         Pav(indexw)=pav; 

            %         Pavb(indexw)=pavb; 

            %         ww=[0 0]; 

            %         tolW(1)=12; 

            %         sig1=(v1w(1)+v2w(1)+v3w(1)); 

            %         sig2=(v1w(2)+v2w(2)+v3w(2)); 

            % %         sig3=(v1w(3)+v2w(3)+v3w(3)); 

            % %         sig4=v1w(4)+v2w(4)+v3w(4); 

            %         tolW(2)=5; 

            % %         if sum(xsw(2,:))>.1 

            % %         while tolW(1)>innertol 

            % %             ww(1)=ww(1)+1; 

            % %             Pdra(1)=Pav(indexw)*.6; 

            % %             Pdrag(ww(1))=Pdra(ww(1))*(1+movefractw/100); 

            % %             Pdra(ww(1)+1)=Pdra(ww(1))+10*((((sig1*(Pdra(ww(1))/100)^2+sig2*(Pdra(ww(1))/100)+sig3-
ff(indexw,5))/sig4))^2)-Pdra(ww(1)); 

            % %            tolW(1)=abs(Pdra(ww(1)+1)-Pdra(ww(1))); 

            % % %         end 

            % %         while tolW(2)>innertol 

            % %             ww(2)=ww(2)+1; 

            % %             Pdrab(1)=Pavb(indexw)*.6; 

            % %             
Pdrab(ww(2)+1)=Pdrab(ww(2))+10*((((sig1*(Pdrab(ww(2))/100)^2+sig2*(Pdrab(ww(2))/100)+sig3-
ffb(indexw,5))/sig4))^2)-Pdrab(ww(2)); 

            % %             tolW(2)=abs(Pdrab(ww(2)+1)-Pdrab(ww(2))); 
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            % %         end 

            % %         PwB(indexw)=Pdrab(ww(2)+1); 

            % %         PwA(indexw)=Pdra(ww(1)+1); 

             

            % Lump static terms (coefficients for quadratic equation) into single factor(s) 

            factor1=sum(lengthw)*kin/lengthURAD+(1/Dw)^2; 

            
factor2=2*kin/lengthURAD*(lengthw(4)*activew1(5)*fchar(5)+lengthw(3)*(activew1(5)*fchar(5)+activew1(4)*fchar(
4))+lengthw(2)*(activew1(5)*fchar(5)+activew1(4)*fchar(4)+activew1(3)*fchar(3)+activew1(2)*fchar(2))+lengthw(1
)*(activew1(5)*fchar(5)+activew1(4)*fchar(4)+activew1(3)*fchar(3)+activew1(2)*fchar(2)+activew1(1)*fchar(1))); 

            
factor3a=kin/lengthURAD*((lengthw(4)*(activew1(5)*fchar(5))^2+lengthw(3)*((activew1(5)*fchar(5)+activew1(4)*f
char(4)))^2+lengthw(2)*(activew1(5)*fchar(5)+activew1(4)*fchar(4)+activew1(3)*fchar(3)+activew1(2)*fchar(2))^2
+lengthw(1)*(activew1(5)*fchar(5)+activew1(4)*fchar(4)+activew1(3)*fchar(3)+activew1(2)*fchar(2)+activew1(1)*f
char(1))^2)); 

             

            movefract=1; %percentage - move from current value - Newton-Raphson 

            P1btw(indextw)=P1atw(indextw)*(1+movefract/100); %Pressure at a % from 

            %the calculated pressure 

             

            %Finalize the factors for solving within the quadratic equation 

            %solver 

            factor3aa=factor3a-deltapstatic+P1atw(indextw); 

            factor3bb=factor3a-deltapstatic+P1btw(indextw); 

             

            %Use the quadratic equation to solve for the flow through the globe 

            %valves and upstream line (as per Ashley Drive above) 

            F1atw(indextw)=(-factor2+sqrt(factor2^2-4*factor1*factor3aa))/(2*factor1); 

            F1btw(indextw)=(-factor2+sqrt(factor2^2-4*factor1*factor3bb))/(2*factor1); 

            %        F1atw(indextw)=sqrt((194-WRbptlevel(tcount)-P1atw(indextw))/((kin*(1+(1-otf)^2)+D^-2))); 

            %        F1btw(indextw)=sqrt((194-WRbptlevel(tcount)-P1btw(indextw))/((kin*(1+(1-otf)^2)+D^-2))); 

             

            %Calculate the flow through ech sleeve valve and cumulative flow (as 

            %per Ashley Drive above) 

            F2a1tw(indextw)=v1w(1)*(P1atw(indextw)/100)+v1w(2)*(P1atw(indextw)/100)^0.5; 

            F2a2tw(indextw)=v2w(1)*(P1atw(indextw)/100)+v2w(2)*(P1atw(indextw)/100)^0.5; 

            F2a3tw(indextw)=v3w(1)*(P1atw(indextw)/100)+v3w(2)*(P1atw(indextw)/100)^0.5; 

            F2atw(indextw)=F2a1tw(indextw)+F2a2tw(indextw)+F2a3tw(indextw); 

            %Calculate the flow through ech sleeve valve and cumulative flow (as 

            %per Ashley Drive above) - for pressure a % away from the calculated 

            F2b1tw(indextw)=v1w(1)*(P1btw(indextw)/100)+v1w(2)*(P1btw(indextw)/100)^0.5; 

            F2b2tw(indextw)=v2w(1)*(P1btw(indextw)/100)+v2w(2)*(P1btw(indextw)/100)^0.5; 

            F2b3tw(indextw)=v3w(1)*(P1btw(indextw)/100)+v3w(2)*(P1btw(indextw)/100)^0.5; 
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            F2btw(indextw)=F2b1tw(indextw)+F2b2tw(indextw)+F2b3tw(indextw); 

             

            %Newton-Raphson convergence criteria 

            critatw=(F1atw(indextw)-F2atw(indextw)) 

            critbtw=(F1btw(indextw)-F2btw(indextw)); 

            %Gradient for next guess calculation for Newton-Raphson algorithm 

            gradienttw=(critbtw-critatw)/(P1btw(indextw)-P1atw(indextw)); 

            %Over relaxation parameter to avoid overshoots and speed-up 

            %convergence 

            slowfracttw=tol1w*15; 

            %next guess calculation according to the Newton-Raphson algorithm 

            P1atw(indextw+1)=P1atw(indextw)-((critatw/gradienttw)*slowfracttw); 

        end 

        %         AAa=(sig1/sig2)^2; 

        %         BBa=-((2*ff(indexw,5)*sig1/(sig2)^2)+1); 

        %         CCa=(ff(indexw,5)/sig2)^2; 

        %         BBb=-((2*ffb(indexw,5)*sig1/(sig2)^2)+1); 

        %         CCb=(ffb(indexw,5)/sig2)^2; 

        % 

        %         PwA(indexw)=((-BBa-sqrt(BBa^2-4*AAa*CCa))/(2*AAa)); 

        %         PwB(indexw)=((-BBb-sqrt(BBb^2-4*AAa*CCb))/(2*AAa)); 

        % 

        %         elseif sum(xsw(2,:))<=.03 

        %             PwA(indexw)=ff(indexw,5)/(0.5/240); 

        %             PwB(indexw)=ffb(indexw,5)/(0.5/240); 

        % 

        %         end 

        %        critwa= (PintwA(indexw)-PwA(indexw)); 

        %        critwb= (PintwB(indexw)-PwB(indexw)); 

        %        gradientw=(critwb-critwa)/(ffb(indexw,5)-ff(indexw,5)); 

        % 

        %        slowfractw=5e2*tol1w; 

        %        ff(indexw+1,5)=ff(indexw,5)-((critwa/gradientw)*slowfractw); 

         

         

         

        %Store variables for plotting etc. 

        Pintwye(tcount)=P1atw(indextw); %pressure before sleeve valves - pressure drop accross sleeve valves 

        Ffw(tcount,:)=F1atw(indextw); %Store flow variables for plotting 

         

        %negative protection reset for flow 
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        FC6(tcount); 

        if sum(WRSVpos(tcount,:))<6e-5 

            FC6(tcount)=0; 

        else FC6(tcount)=F1atw(indextw); 

        end 

         

        GVa=(FC6(tcount)/Dw)^2; 

        Pavawye(tcount)=Pintwye(tcount)+GVa; %pressure at entrance to wyebank 

        FC5(tcount)= FC6(tcount)+activew1(tcount,5)*fchar(5); % begin calculation of intermediate flows based on 
gusesses 

        FC4(tcount)=FC5(tcount)+activew1(tcount,4)*fchar(4); 

        FC3(tcount)=FC4(tcount)+activew1(tcount,2)*fchar(2)+activew1(tcount,3)*fchar(3); 

        FC2(tcount)=FC3(tcount)+activew1(tcount,1)*fchar(1); 

        %Pressure drop calculations for pressure profile along the line to the 

        %Wyebank Road BPT from the Ashley Drive BPT 

        pdroptw(tcount,1)=kin/lengthURAD*lengthw(1)*FC2(tcount)^2; 

        pdroptw(tcount,2)=kin/lengthURAD*lengthw(2)*FC3(tcount)^2; 

        pdroptw(tcount,3)=kin/lengthURAD*lengthw(3)*FC4(tcount)^2; 

        pdroptw(tcount,4)=kin/lengthURAD*lengthw(4)*FC5(tcount)^2; 

        pdroptw(tcount,5)=kin/lengthURAD*lengthw(5)*FC6(tcount)^2; 

        %Pressure profile calculations 

        pdropstw(tcount,:)=pdroptw(tcount,:)./1; % pressure drops in the lines to wyebank in meters 

        dpgv2(tcount)=GVa; %Globe valve pressure drops 

        PN1(tcount)=Pavawye(tcount)+ 
pdropstw(tcount,5)+pdropstw(tcount,4)+pdropstw(tcount,3)+pdropsWR(tcount,2); 

        PN2(tcount)=Pavawye(tcount)+ pdropstw(tcount,5)+pdropstw(tcount,4)+pdropstw(tcount,3); 

        PN3(tcount)=Pavawye(tcount)+ pdropstw(tcount,5)+pdropstw(tcount,4); 

        PN4(tcount)=Pavawye(tcount)+ pdropstw(tcount,5); 

         

        %Calculations for the flow through each sleeve valve 

        F1w(tcount,:)=v1w(1)*(Pintwye(tcount)/100)+v1w(2)*(Pintwye(tcount)/100)^0.5; 

        F2w(tcount,:)=v2w(1)*(Pintwye(tcount)/100)+v2w(2)*(Pintwye(tcount)/100)^0.5; 

        F3w(tcount,:)=v3w(1)*(Pintwye(tcount)/100)+v3w(2)*(Pintwye(tcount)/100)^0.5; 

         

        %     Pintwye(tcount)=PintwA(indexw); %pressure before sleeve valves - pressure drop accross sleeve valves 

        %     Pavawye(tcount)=Pav(indexw); %pressure at entrance to wyebank 

        %     Ffw(tcount,:)=ff(indexw,5); %Store flow variables for plotting 

        %     FC2(tcount)=ff(indexw,1); 

        %     FC3(tcount)=ff(indexw,2); 

        %     FC4(tcount)=ff(indexw,3); 

        %     FC5(tcount)=ff(indexw,4); 

        %     F1w(tcount,:)=v1w(1)*(Pintwye(tcount)/100)+v1w(2)*(Pintwye(tcount)/100)^0.5; 
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        %     F2w(tcount,:)=v2w(1)*(Pintwye(tcount)/100)+v2w(2)*(Pintwye(tcount)/100)^0.5; 

        %     F3w(tcount,:)=v3w(1)*(Pintwye(tcount)/100)+v3w(2)*(Pintwye(tcount)/100)^0.5; 

        % 

         

        if F1w(tcount,:)<0 

            F1w(tcount,:)=1e-7; 

        end 

        if F2w(tcount,:)<0 

            F2w(tcount,:)=1e-7; 

        end 

        if F3w(tcount,:)<0 

            F3w(tcount,:)=1e-7; 

        end 

         

         

         

        %     pdrops(tcount,:)=pdrops./9.81e3; % pressure drops in the lines to wyebank in meters 

        %     dpgv2(tcount)=GVa; %Globe valve pressure drops 

        %     PN1(tcount)=Pavawye(tcount)+ 
pdropsWR(tcount,5)+pdropsWR(tcount,4)+pdropsWR(tcount,3)+pdropsWR(tcount,2); 

        %     PN2(tcount)=Pavawye(tcount)+ pdropsWR(tcount,5)+pdropsWR(tcount,4)+pdropsWR(tcount,3); 

        %     PN3(tcount)=Pavawye(tcount)+ pdropsWR(tcount,5)+pdropsWR(tcount,4); 

        %     PN4(tcount)=Pavawye(tcount)+ pdropsWR(tcount,5); 

        % 

         

         

        %Create a vector of flows in lines between the two BPTs - referencing 

        Foutashley(tcount,:)=[FC2(tcount) FC3(tcount) FC4(tcount) FC5(tcount) FC6(tcount)]; %flows in lines leading 
to wyebank 

        %after wyebank calcs 

         

         

         

         

         

        %% Create variables for plotting 

        AWRresdraws(tcount,:)=activela1(tcount,:).*fcharla; 

        WRoutflow(tcount)=sum(AWRresdraws(tcount,:),2); 

        FD1(tcount)=WRoutflow(tcount); 

        FD2(tcount)=FD1(tcount)-AWRresdraws(tcount,1); 

        FD3(tcount)=FD2(tcount)-AWRresdraws(tcount,2); 
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        FD4(tcount)=FD3(tcount)-AWRresdraws(tcount,3); 

        Val(tcount)=AWRresdraws(tcount,4)- FD4(tcount); %check accuracy of calc 

        pdropdw(tcount,1)=kin/lengthURAD*lengthla(1)*FD1(tcount)^2; 

        pdropdw(tcount,2)=kin/lengthURAD*lengthla(2)*FD2(tcount)^2; 

        pdropdw(tcount,3)=kin/lengthURAD*lengthla(3)*FD3(tcount)^2; 

        pdropdw(tcount,4)=kin/lengthURAD*lengthla(4)*FD4(tcount)^2; 

         

        if tcount>1 

            %     ADdPKE2(tcount)=-(Ff(tcount)^2-Ff(tcount-1)^2)/density/deltat/(pi*diamw(1)^2/4)^2; 

            %     WRdPKE2(tcount)=-(FC6(tcount)^2-FC6(tcount-1)^2)/density/deltat/(pi*diamw(1)^2/4)^2; 

            ADdPKE(tcount)=-(Ff(tcount)^3-Ff(tcount-1)^3)*density*deltat/2/(pi*diamw(1)^2/4)^2; 

            WRdPKE(tcount)=-(FC6(tcount)^3-FC6(tcount-1)^3)*density*deltat/2/(pi*diamw(1)^2/4)^2; 

            ADdPKE3(tcount)=-ajou*density*(Ff(tcount)-Ff(tcount-1))/(pi*diamw(1)^2/4)/1000; 

            WRdPKE3(tcount)=-ajou*density*(FC6(tcount)-FC6(tcount-1))/(pi*diamw(1)^2/4)/1000; 

            ADdPKE4(tcount)=-lengthURAD*density*(Ff(tcount)-Ff(tcount-1))/(pi*diamw(1)^2/4)/deltat/1000; 

            WRdPKE4(tcount)=-sum(lengthw)*density*(FC6(tcount)-FC6(tcount-1))/(pi*diamw(1)^2/4)/deltat/1000; 

        end 

        timeplot(tcount)=tcount; 

    end 

 

 


