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In cross-flow microfiltration (CFMF), the suspension is pumped tangentially over the filtration
medium. Clear liquid permeates the filtration medium and is recovered as the permeate, while
the solids accumulate at the filtration barrier to form a fouling layer, or cake. The cake,
constituting an increase in hydraulic resistance, decreases the permeate flux. However, the
tangential suspension flow tends to fimit the growth of the cake. Thus, after an initial rapid
increase in cake thickness, cake growth ceases, and the cake thickness becomes limited to some
steady-state value. Correspondingly, after an initial rapid decrease, the permeate flux levels
off and either attains a steady-state, or exhibits a slow, long-term decline with time.

Design and optimisation of CFMF systems necessitates a knowledge of the factors that govern
CEMF behaviour. More specifically, it is necessary to know the effects that the operating
variables, system variables and suspension properties have on the permeate flux. Although
various models have been proposed for CFMF, there still exists a lack of knowledge of the
basic mechanisms that determine CFMF behaviour, especially for systems operated under
turbulent flow conditions.

This study constitutes a contribution towards the understanding and the modelling of the
turbulent CEMF of particulate suspensions. The primary objective was to model the steady-state
cake thickness and permeate flux in terms of the operating variables, equipment variables and
suspension properties. The secondary objective was to investigate the influence that the cake
characteristics have on the system behaviour. These objectives were accomplished as described
below.

In the experimental study, the characteristic flux-time curve, effects of inlet velocity, bulk
concentration and pressure on flux, and system responses to step-changes in operating conditions
were obtained for a limestone suspension cross-flow filtered in a 25 mm woven hose tube. Inlet
velocities investigated ranged from 0,85 m/s to 1,98 m/s, bulk concentrations from 10,0 g/£ to
77,6 g/¢, and pressures from 100 kPa to 300 kPa. The steady-state flux was found to be a
function of all the operating variables studied, over the ranges investigated. However, it was
also found that the flux is not uniquely determined by the operating conditions, but can exhibit
a dependance on the operating path taken to reach the operating point.

A qualitative model of the mechanisms that determine cake growth and limit was then developed,
based on an analysis of the likely particle transport processes in the system. The observations
from the experimental study were utilised to infer the controlling processes. Three significant
particle transport processes were identified - convection of particles towards the cake, shearing
of particles off the cake and into the adjacent suspension laver, and diffusion from this layer



back to the bulk suspension. This back diffusion is effected by shear induced hydrodynamic
diffusion, entrainment by turbulent bursts, and entrainment by turbulent eddies. The limiting
or steady-state cake thickness is controlled by the convection-diffusion processes.

The qualitative model was then formulated into a mathematical model of the steady-state. The
appropriate steady-state equations were identified. Functions required for the solution of the
equations were then formulated from current fluid and particle dynamics technology and
correlations. Four model parameters result, and these were subsequently quantified by
computational experiments and a regression technique. An iterative, nested finite difference
solution procedure was developed, permitting the prediction of the steady-state flux, cake
thickness and concentration profile, for specified operating and system variables.

Predicted steady-state fluxes exhibit a notably good correspondence with experimental
observations, and on average are within 10 % of experimentally observed values. The model
also predicts a unique concentration profile, indicating that cake growth and limit is most
probably controlled by a thin, distinct, concentrated suspension layer adjacent to the cake.

There are however significant limitations to the model. Firstly, the model is only applicable
to systems where the limiting cake thickness is convection-diffusion controlled. Secondly, the
inclusion of a shear induced hydrodynamic diffusivity in the model restricts its applicability
to particulate suspensions that do not exhibit significant non-Newtonian characteristics. Further,
the model parameters cannot be easily quantified from either current knowledge or simple
laboratory tests, thereby limiting the predictive ability of the model.

Observations in the experimental study indicated that some system behaviours, i.e. the long-term
flux decline and dependence of flux on the operating path, were seemingly determined by the
characteristics of the cake. Accordingly, the nature of the cake and its influence on system
behaviour was investigated. Three phenomena contributing to changes in the cake characteristics
were addressed, viz. hydraulic compression, the preferential deposition effect and the fines
infiltration effect. The mechanisms of these processes are discussed, together with their
individual effects on the cake characteristics. Mechanisms proposed for the preferential
deposition effect and fines infiltration effect are partially based on the qualitative model of
cake growth and limit. The individual effects were then combined to indicate the net effect
on cake characteristics during the cake growth period as well as during the slow decline in flux
period. This was then applied to explain the seemingly anomalous behaviours observed in the
experimental study.
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Chapter 1

INTRODUCTION

1.1  BACKGROUND

The technique of cross-flow microfiltration (CFMF) potentially enables the continuous filtration
of particulate suspensions. The suspension is pumped into a porous tube (Figure 1.1).

!
i T
Feed ) . * *
—— Bulk suspensmn
Vg e Mi% T
Permeate
FIGURE 1.1 Description of CFMF Process

Clear liquid permeates the tube wall, driven by the pressure difference across the wall, and is
recovered as the permeate. This flow of fluid normal to the wall convects particles to the wall
where they accumulate to form a polarised layer, the cake. The cake, constituting an increase
in the hydraulic resnstance, decreases the permeate flux. However, the flow of the bulk
suspension tangential to the cake tends to limit its growth, eventually resulting in a cake
thickness, and hence permeate flux, that is relatively constant with time -~ the steady-state
condition. This can be contrasted to standard dead-ended filtration techniques where the cake
thickness increases continuously with time, resulting in a permeate flux that decreases
continuously and rapidly (Figure 1.2). Permeate production rates obtained in CFMF systems
are thus substantially higher than that obtained in equivalent dead-end filtration systems.
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The technique of utilising a tangential flow to minimise the growth of the

polarised layer is,

of course, also used in other membrane separation processes e.g. reverse osmosis (RO),
nanofiltration (NF) and ultrafiltration (UF). Dif ferentiation amongst the processes essentially

resolve to the size of the rejected species, and in general can be represented by

[Schneider and Klein (1982)].
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Porous supports utilised in CFMF include stainless steel, ceramic, rigid plastic and woven fibre
tubes [Henry (1972), Kraus (1974)]. The major advantage of stainless steel, ceramic and rigid
plastic tubes is that they maintain their geometric integrity and can thus be back-flushed. They
also enable operation at elevated pressures. Woven fibre tubes can be produced relatively
inexpensively in large lengths [Dalheimer et al. (1970), Kraus (1974)]. This potentially extends
the economic viability of CFMF to large-scale high-volume applications.

In considering the rigid tubes, the tube wall is usually the filtration barrier, and the formation
of a cake is undesirable. In the woven fibre tubes the actual filtration barrier is invariably the
cake that forms on the tube wall. The close packing of the cake can enable the retention of
particles that are often orders of magnitude smaller than the pores in the tube wall. This system
thus affords the advantage that tubes with relatively large pores may be used, enabling easier
cleaning and minimising irreversible fouling of the pores [Kraus (1974)].

Applications of CFMF range widely, from the filtration of beer and wine to the recovery of
bacterial cultures. Of interest are the current attempts by the Pollution Research Group at the
University of Natal to investigate the viability of CFMF for the large scale filtration of water
for potable use, as well as the filtration of waste water. If proved viable, this could be of
major significance to the water industry and CFMF could replace a substantial fraction of
conventional water treatment facilities. The use of CFMF for the provision of potable water
is of special significance in the Southern African context. Rapid growth of informal settlements
in peri-urban areas has created an almost overnight demand for potable water, a demand that
cannot be met in the immediate future by the existing conventional water treatment facilities
[Umgeni Water (1990)]. CFMF, being relatively simple in concept, could potentially fulfil a
substantial fraction of this demand.

Various models have been proposed to describe CFMF behaviour, and in general attempt to
describe the mechanisms responsible for the eventual limiting of cake growth!. Most models
are restricted to systems operating in the laminar flow regime. Of the models specific to
turbulent flow systems, there are discrepancies between model predictions and experimentally
observed trends. Further, various contradictions exist between model assumptions and known
fluid and particle dynamics. Effectively, thereisa distinct lack of knowledge of the fundamental
mechanisms that determine particle transport, and hence cake growth and limit, in turbulent
CFMF systems.

In most real systems, the permeate flux does not remain constant after the limiting (or
steady-state) cake thickness has been achieved, but continues to show a slow decline with time.
This is generally attributed to changes in the characteristics of the cake. Although some studies
have been initiated into '_the nature of these changes, no major attempt has been made to fully
describe the effects that changes in cake characteristics have on the system behaviour.

o

1 These will be discussed in a later chapter of this thesis.
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This study constitutes a contribution towards an understanding of the basic mechanisms that
determine the flux-time behaviour of a CFMF system operated in the turbulent flow regime.
The prime intention is to determine the fundamental mechanisms responsible for cake growth
and limit in turbulent flow systems, and hence to develop a model of the steady-state condition.
The secondary intention is to investigate the nature of changes experienced by the cake and
the effects that this has on system behaviour.

1.2 OBJECT IVES

The specific objectives of the study are as follows :

1) To develop a realistic, qualitative model to describe the steady-state condition in
turbulent CFMF systems, from current knowledge of fluid and particle dynamics in
turbulent flows. '

ii) To investigate the mathematical formulation of this qualitative mode!, identifying
parameters that may, and may not, be quantified from existing knowledge of fluid and
particle dynamics and suspension properties.

iii) To investigate changes experienced by the cake structure, for the system under study,
and the effect that these have on system behaviour.

1.3 APPROACH AND THESIS ORGANISATION

The starting point in modelling the system is to establish the characteristic behaviour of the
system viz, the flux-time behaviour and the effects of operating conditions on flux. Although
numerous studies on CEFMF behaviour do exist, there are often contradictions in reported trends
for the effects of operating conditions on flux, as will be shown in Chapter 2. Further, the
global processes responsible for the flux-time behaviour (i.e. cake growth, cake compression,
cake ageing, fines infiltration) seemingly differ from system to system. The first task in this
study thus resolved to obtaining a consistent dataset of typical CFMF behaviour, prior to
attempting to model this behaviour. Accordingly, this thesis deviates from the usual thesis
organisation i.e. Introduction - Literature Survey - Theory - Experimental - Discussion -
Conclusions. Here, the experimental study is presented first, and the subsequent model
development is based on these experimental observations. Further, reporting of literature is
not confined to a single chapter, but is interspersed throughout the study, where appropriate.

Chapter 2 concerns the experimental study. The characteristic flux-time behaviour and the
effects of operating variables on flux are obtained for a limestone suspension, and system
responses to step-changes in operating variables are monitored. From this, the controlling
processes responsible for the flux-time behaviour (i.e. cake growth and fines infiltration) are
confirmed, and the trends that the steady-state flux exhibits with respect to inlet velocity, bulk
concentration and pressure are characterised.
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In Chapter 3 a qualitative mechanistic model of the steady-state condition is developed. Existing
CFMF models are critically reviewed in terms of the experimental observations. An overview
of particle transport mechanisms in a turbulent CFMF system is developed, based on current
knowledge of fluid and particle dynamics in turbulent flows. This is then consolidated into a
qualitative model of the steady-state condition. This qualitative model is translated into a
mathematical model of the steady-state in Chapter 5. The reason for the separation of the
qualitative and quantitative aspects of the mode! will be addressed in Chapter 3.

Changes in the cake structure and characteristics, and the effects that this has on system
behaviour, forms thé topics of Chapter 4. Three phenomena that effect changes in the cake
characteristics are addressed - hydraulic compression, fines infiltration and the preferential
deposition of smaller particles. The mechanisms by which these occur are discussed, together
with their individual and combined effects on the cake characteristics. Mechanisms proposed
for fines infiltration and the preferential deposition of smaller particles are based on the
qualitative model of particle dynamics developed in Chapter 3. These are then applied to
explain various "anomalies" observed in the experimental study.

In Chapter 5 the qualitative model of the steady-state developed in Chapter 3 is formulated
into a mathematical model. The appropriate steady-state equations are identified. Model
functions required for the solution of the equations are then formulated from existing fluid
and particle dynamics technology and correlations. A numerical solution procedure is developed,
enabling the prediction of the steady-state cake thickness, permeate flux and concentration
profile for specified system and operating variables. Model predictions are then evaluated in
terms of experimental observations.

Finally, in Chapter 6, the major findings of this study are summarised, shortcomings of the
models are discussed, and suggestions for future research are made.

The overall thesis organisation is depicted pictorially in Figure 1.4, Note that Chapter 4 does
not form a part of the mainstream of the thesis.
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EXPERIMENTAL OBSERVATIONS

2.1 INTRODUCTION

The objectives in this chapter are as follows :-

I) To identify the characteristic behaviour of a'cross-flow microfiltration (CFMF) system
operated in the turbulent flow regime, including flux-time behaviour, effects of
operating variables on steady-state flux and the operational path dependence of
flux-time behaviour, ‘ '

2) To identify the global processes (e.g. cake growth, comﬁi’esgion effects) responsible for
the characteristic flux-time behaviour of the system under study.

It is recognised that the effects of operating variables on flux have been widely studied and
reported [Saw et al. {1985), Dalheimer et al. (1970), Hunt et al. (1987b), Rautenbach and
Schock (1988)], and further that some studies have identified the global processes responsible
for characteristic flux-time behaviour [Baker et al, (1985)]. These experiments are repeated
in this study in order to ascertain whether previously reported observations are applicable to
the system under study, and to obtain an internally consistent dataset for the evaluation of
proposed models.

22  EXPERIMENTAL SYSTEM

2.2.1 Apparatus

A schematic diagram of the experimental CFMF apparatus is presented in Figure 2.1.

Feed from either of two feed tanks is pumped into the CFMF tube by two HYDRACELL®
D25 triplex positive displacement pumps driven by a single 15 kW AC motor. The speed of
the motor, and hence of the pumping rate, is controlled by a CCL TRIDENT® AC frequency
invertor. The sequence of the pump diaphragms are offset by 60° from each other and this,
together with the downstream accumulator, results in smooth delivery of pumpéd fluid. The
feed tanks are well stirred and are fitted with heating and cooling coils linked to a temperature
controller, enabling constant temperatures to be maintained during experiments.
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A view glass downstream of the CFMF tube permits observation of the reject stream.
Back-pressurisation is accomplished by a Saunders diaphragm valve downstream of the view
glass. The reject stream may be returned to either of the feed tanks. Permeate flows down
the permeate gutter into a permeate tank from which it is pumped back into the appropriate
feed tank by a centrifugal pump controlled by level probes in the permeate tank. The permeate
gutter is covered with perspex, reducing evaporation of permeate.

The system operates on a closed recycle basis ie. all streams are returned to the feed tank,
maintaining a constant feed tank volume. Further, the flowrate, pressure and concentration
may all be varied independently,

2.2.2 Instrumentation

(a) Flowrate - Feed flowrate is measured by a KROHNE® magnetic induction flowmeter.
Empirical calibrations indicated that the flowmeter is accurate to greater than 99 % of
actual flow, and is insensitive to feed concentration over the range considered here,

(b) Pressure - Pressure tappings are positioned at the entrance to, and the exit of, the
CEMF tube. These are connected via a single switching valve to 3 WIKA® pressure
sensor. A facility exists to purge the pressure lines with water to remove any solids
which may have entered during experiments.

(c) Concentration - batch samples are obtained from the feed tank and the concentration
is then ascertained by a gravimetric method. Although sample valves exist upstream
and downstream of the CFMF tube, these were not used during experiments. The
reason for this will be addressed in Section 2.5.3.1

(d) Temperature - The temperature of the feed tank is indicated on the temperature
controller. During each experiment the temperatures of the feed, permeate and reject
streams were also monitored with a thermometer, to ensure cons_istency.

2.2.3 CFMF Tubes

The tube consists of a single length of woven polyester hose of outside diameter 25,2 mm (under
pressure) and length 4,5 m, The diameter of the tube was insensitive to pressure over the range
considered here. The first 1,2 m and last 0,3 m of the tube is rendered impermeable by the
application of a commercial resin, SHOEPATCH®. These non-porous regions serve to reduce
spurious entrance and exit effects. The effective length of the porous tube is thus 3,0 m,
yielding an effective filtration area of 0,238 m2. ' -

In initial experiments, the SWISS SILK tube (Schweiz Seidengazefabrif AG Thal), as used by
Hunt (1987a), was used. However, it was found that for at least the first 20 hours of a run,
suspension flowed readily through the pores of the tube and a very long run time was required
before a stable cake formed and the permeate became clear., Further these tubes exhibited
very little pressure integrity, expanding significantly in diameter wit‘n‘any increase in pressure,
resulting in destruction of any cake that had formed. Investigations indicated that the poor
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performance of the tubes was due to a gross mismatch between the size of the pores in the
tube wall and the size of the particles used, making it difficult for particles to bridge stably
across the pores to form a cake.

Subsequently the TRIPLE SEAM WOVEN POLYESTER HOSE supplied by HTW High Tech
Water NV was tested. These tubes had been treated with a resin, INDOSOL®, which reduced
the effective pore size of the tube and increased its pressure integrity. With this tube a stable
cake and clear permeate were obtained within a minute of start-up and the tube diameter was
insgnsitive to operating pressure. This type of tube was subsequently used for all experiments
reported in this study. '

The pure water flux of the bare tube is extremely high (> 8 000 £/m2h at a pressure of 10 kPa).
Since this flux is orders of magnitude greater than fluxes obtained with the suspension, it was
assumed that the resistance of the tube wall could be regarded as negligible in comparison to
that of the cake.

2.2.4 Suspension

The suspension consisted of pulverised limestone, available commercially as KULU 5, suspended
in reverse osmosis (RO) permeate.  Limestone particles were chosen due to their relative
inertness in water, relative resistance to abrasion and shear and cheap availability [Hunt (1987a)].
RO permeate was used as the suspension medium in order to ensure consistent feed quality and
to minimise the probability of any secondary membrane being formed [see Leger (1983)].

The physical properties of the limestone are given in Appendix I.

23 EXPERIMENTAL PROCEDURE

2.3.1 Feed Preparation

The feed suspension was prepared by mixing a weighted quantity of limestone with a known
volume of RO permeate, calculated to yield the desired concentration. A new batch of feed
was prepared for each experiment.

Initially, repeatibility of the flux-time curves was poor. Investigations indicated that this poor
repeatibility was possibly due to feed suspensions being made up from different batches of
limestone which seemingly had different particle size distributions. To obviate this and ensure
a consistent feed for all experiments a large quantity of limestone was purchased and homogenised
manually. All experiments reported here were performed with this homogenised batch.

2.3.2 Start-up Proced"u re

The tube was washed out with RO perméate and the suspension flow started with the back
pressure valve open. The f lowrate was then set to the desired value by adjusTing the speed
of the pump via the frequency invertor. This operating flowrate was generally achieved within -
15 seconds. For the first minute, the permeate and reject were discharged to drain, to clear
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out any RO water in the process lines. The permeate and reject streams were then switched
back to the feed tank. The downstream pressure was then increased rapidly up to the desired
operating pressure by closing the downstream back pressure valve. The flowrate did not change
substantially during this pressure increase and the operating pressure was generally reached
within 15 seconds. Initially the pressure tended to increased rapidly and had to be continually
adjusted to the operation point by adjusting the back pressure valve, After about 5 minutes
the system settled and only occasional adjustments to the back pressure valve were necessary.
In all experiments reported here the permeate was clear to the eye from start-up.

The downstream pressure was selectively chosen as the control pressure on the presumption
that the long non-porous entrance region would have resulted in the upstream pressure probe
indicating a pressure significantly higher than the actual pressure in the porous zone. Since
the pressure drop along the non-porous entrance region will be a strong function of velocity
it would thus be difficult to maintain a constant operating pressure at dif ferent velocities. It
subsequently occurred that this precaution was not really necessary since, at worst, the pressure
drop along the tube was less than 5 % of the operating pressure, for the experiments reported
here. - ' ’

2.3.3 Measurement Technigues

(a) Permeate flux - The flux was monitored at 5 minute intervals by measuring the time
taken for the permeate to fill a 2 £ measuring cylinder.

(b) Cake thickness - An attempt was made to monitor the growth of the cake. Techniques
investigated included X-rays, gamma rays and ultrasonic scanners but all proved to be
unsuitable in their local commercially available form.

With respect to X-rays and gamma rays, the available industrial units are designed for
the analysis of steel structures and emit relatively high energy rays. Under these
circumstances, the image of the cake is relatively indistinct and the error in the.
measurement of cake thickness is = 0,5 mm. A further problem is that the apparatus
is relatively cumbersome and a relatively long exposure time is required, thus excluding
the possibility of monitoring the growth of the cake.

Medical ultrasonic "body scanners' provided a cross-sectional view through the tube.
The first problem with the apparatus is that the depth of field in the commonly available
units is = 200 mm. In these circumstances, the image of the cake is merely a thin line
on the monitor, precluding accurate measurement of cake thickness. A scanner with
a small depth of field ( = 50 mm) was eventually tested. This provided some qualitative
observations on the cake thickness profile with time (see Section 2.5.1). However, the
apparatus is extremely expensive and since it was calibrated for the sonic density of
the human body could not be directly employed in the measurement of cake thickness.

It seemed that a substantial developmental time would be required before any of tﬁese
technigues could be successfully applied to the measurement of cake thickness, and
direct measurement of cake thickness was not pursued further in this study.
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24 PROCESSING OF PRIMARY MEASUREMENTS AND ERROR ANALYSIS

2.4.1 Primary Measurements

The primary measurements taken, and the experimental uncertainties therein, are summarised

in Table 2.1.
TABLE 2.1 Values and Uncertainties in Primary Measurements
Value Uncertainty % Uncertainty
Equipment Variables
Tube Radius (R} 0,0126 m 0,00025 m 2,0
Tube Length (L) 30m 0,005 m 0,2
Permeate Flow Measurements
Volume of permeate 201¢ 0,02 ¢ 1,0
collected (V porm )
Time to collect permeate range 20 s to 0,4 seconds range 0,6 to 2,0
(t perm ) 80 s
Operating Variables
Suspension Flowrate (Q) range 1500 £/h to 50 £/h range 1,4 to 3,3
3500 ¢/h
Pressure (P) range 100 kPa to 3 kPa range 1,0 to 3,0
300 kPa
Bulk Concentration {(C;) range 10 g/¢ to 1 g/t range 1,3 to 10,0

80 g/t




2.4.2 Calculation of Permeate Flux and Superficial Inlet Velocity

2.4.2.1 | Permeate flux

permeate flowrate 3 600

J, (i7m?h)
area 1

V perm i 3 600
Loerm 2URL 1

2.0 1 3 600
{perm T(0,0252)(3.0) 1
_ 30 315.2 '
!p!rm

2422 Superficial Inlet Velocity

— feed flowrate 1 1
/ =

U, (m/s) flow area 3 600 1 000
Q 1
ntR? 3 600 000

Q 1

n(0.,0126)* 3 600 000
_Q_
1 795.5

2.4.3 Error Analvsis

Let Q(F)= % uncertainty in the measured quantity F

2.4.3.1 Uncertainty in Permeate Flux

Q(J,)

L]

max{l : 2 ; 1.98 ; 0.17]

2.0%

2432 Uncertainty in Superficial Inlet Velocity

Qb))

¥

max[Q(Q): 2Q(R)]

max{3.3 : 4.0]

4.0%

Mmax[QV yorm)s QU porm) s QCR) 1 Q(L)]

mhx[ﬂ(fecrl flewrate): Q{flow area)]

max[{l{permeate [lowrate); {)(filtration area)]
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(2.1)

(2.2)



2433 Errors in Flux-Time Curves

There are two sources of errors inherent in the flux-time curves reported in Sections 2.5.1 to
2.5.3:

(i) Uncertainty in the flux value (see Section 2.4.3.1)

(ii) Uncertainty in the time at which the flux is plotted - Assume that at time ¢ after
start-up a period {,,,, was required for the permeate to fill the graduated cylinder.
The flux so calculated has been plotted at time ¢, rather than the mean time of
t+(tperm/2) . The uncertainty in the time is thus & (¢ ern/2).

A typical flux-time, with an error envelope representing the uncertainty, is presented in
Figure 2.2. It is seen that the uncertainties are insignificant when compared to the point values.
For clarity, error envelopes have been excluded from subsequent presentations of flux-time
curves.
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o)
o 700t

]

2

o 600 |

L1b)

S

5 500 b
a

400 . L L ! !
0 20 40 60 g0 100 120
Time (minutes)
FIGURE 2.2 Typical Uncertainties in Measured Flux Values
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2434 Errors in Flux vs Operating Variables Curves

There are two inherent errors in reported curves depicting the effects of operating variables
on flux :

(a) Uncertainty in the flux value (see Section 2.4.3.1)
(b) Uncertainty in the value of the operating velocity, pressure or concentration (see
Table 2.1)

Once again, the errors are small in comparison to the point values. In any event, if error bars
were employed they would be of similar size to the symbols used to represent the experimental
datapoints (see e.g. Figure 2.11). In effect, the experimental errors may be inferred from the
symbols used to depict the experimental datapoints, and hence error bars have been excluded

from all graphs depicting the effects of inlet velocity, bulk concentration and pressure on the
steady-state flux.

2435 Repeatibility

Flux-time curves obtained in separate experiments conducted at similar operating conditions
are depicted in Figure 2.3. Repeatibility is good. However, good repeatibility is subject to
the feed suspensions being made up from the same batch of limestone (see Section 2.3.1).
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o
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FIGURE 2.3 Typical Repeatibility in Flux Measurements




2.5 RESULTS

2.5.1 Flux-Time Behavigur

A typical flux-time curve is presented in Figure 2.4, Consistent with previously reported
trends[Baker et al. (1985), Knibbs (1981), Hunt (1987b), Saw et al. (1985), Le (1987)], the flux,
J. , exhibits an initial rapid decrease followed by a slow, almost linear decrease with time.
This long-term slow decline is a feature of all results obtained in this study, and no true
steady-state fluxes were obtained. In the rest of this study, the initial period of rapid flux
decline will be referred to as Period I, and the subsequent slow decline period as Period I1.
The basis for the boundary between the periods is outlined at the end of Section 2.5.1.

1200
: Run 48  Ug = 1,42 m/s
= i Cy = 39.4 g/
e P = 200 kPo
~2 1000 - '
nd i
-~ i
[]
)
1
(]
i
= 800 l
: ' slow decline
3 ': in flux
L i {Period 1)
L |
o 600 | _ oo
[ rapid decline 1
£ in flux ! _
© (Period 1) | i
& et
400 ' ! ; I i 1 1 1 1 L ] 1
o  1c 20 30 40 S0 60 70 8 90 100 N¢ 120 130
Time (minutes)
FIGURE 2.4 Typica! Flux-Time Curve

On a log-log scale, the flux-time response typically exhibits a behaviour as in Figure 2.5. After
an initial highly negative value (= -0,47), the gradient progressively increases and the curve
eventually becomes almost linear, with a gradient of = -0,14, after about 35 minutes. This is
in contrast to previous. studies where log flux vs log time plots yielded fully linear curves
[Dalheimer et al. (1970), Krause (1974)]. For a true steady-state, the log flux-log time curve
will yield a slope of 0, and for ideal deposition, where the mass of cake deposited is proportional
to the flux (e.g. dead-end filtration), the slope wouid asymplote toa slope of -0,5 [Krause (1974)}.
Figure 2.5 clearly confirms that in CFMF systems cake growth becomes progressively less

dependent on the permeate flux, and hence the flux declines at a slower rate than in dead-end
filtration.
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3.1
Run 48 Ug = 142 m/s
Cp = 39.4 g/
3k P = 200 kPo

log Flux

"0.6 0,8 1 1,2 1,4 1.6 1,8 2 2,2
log Time
FIGURE 2.5 Typical Flux-Time Curve (log-log scale)

Since the driving force for permeate flow, i.e. the pressure drop across the tube wall, remained
constant, a decrease in permeate flux indicates an increase in the hydraulic resistance to flow.
In the system studied here, the controlling hydraulic resistance is the cake of solids that forms
on the tube wall (see Section 2.2.3). A decrease in flux is thus due to either a growth of the
cake or a change in the cake characteristics leading to a cake of lower permeability. Changes
in cake characteristics may include compression and consolidation of the cake, infiltration of
finer particles (fines) into the cake, or chemical changes within the cake.

It is generally accepted that the initial rapid decline in flux is caused by rapid cake growth.
Studies in which the mass of deposited cake was monitored with time confirm this
[Baker et al. (1985)]. An increase in cake mass could be due to an increase in cake thickness,
and/or the formation of a more compressed, denser cake. Qualitative monitoring of the cake
using an ultrasonic imaging device indicated that during the period of rapid decline in flux,
the cake thickness increased rapidly and substantially (see Section 2.3.3). It is thus most likely
that for the system under study, the decline of flux in Period I is due to an increase in cake
thickness.

The subsequent slow decline of flux (Period II) could be duetoaf urther, slow increase in cake
thickness, or a change in cake characteristics. The study of Baker et al. (1985) indicated that
the long term decline of flux is most probably due to a change in cake characteristics. In that
study, the mass and particle size distribution of the cake was monitored with time. For the
first 20 to 25 minutes the decrease in flux is strongly correlated with a simultaneous increase
in cake mass. Thereafter, the cake mass remained approximately constant but the flux continued
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to decline. The average particle size in the cake, however, progressively decreased with time.
There is thus a strong indication that the long term decline in flux in that system was most
probably due to preferential deposition of finer particles into the cake, leading to a cake of
progressively decreasing permeability. In a later paper, Hoogland et al. (1988) found that the
. cake mass actually decreased with time, while the particle size also decreased. This further
militates against cake growth being the cause of flux decline in Period IL

Accepting that cake growth is not the cause of the slow flux decline in Period II, the task then
resolves to determining which of the following processes is responsible for flux decline in

Period II for the system under study - slow compression, chemical changes within the cake or
fines infiltration.

In the present study, the capturing of the cake was not feasible, and hence any change in
average cake particle size with time could not be monitored. There is however strong alternate
experimental evidence that the slow decline in flux in Period I is NOT due to chemical changes
within the cake or slow compression of the cake, for the system under study. The experiment
yielding this inference is described below.

The system was started up at a superficial inlet velocity (U,) of 1,42 m/s, pressure (P ) of

200 kPa, and bulk concentration (C3 ) of 77,6 g/¢ , and the flux-time behaviour was monitored.
This flux-time curve was highly repeatable. Thereafter, the system was started up as above,
but the feed was switched to a second tank containing RO permeate (Cz = 0 g/¢t) after 60
minutes. The resultant flux-time curves are shown in Figure 2.6.
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e _—
800 U, = 1.42 m/s
P = 200 kPa
E
- 00
x
=
L eoo |
o©
-
o
QL
g 500 |- et e gty i e g e e e i =) 2
Q
o 1
400 I { 1 \ 1 L { L I ! ¢ 1
0 10 20 30 40 50 60 70 BO 90 100 1350 120 130
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FIGURE 2.6 Flux-Time Curve Obtained on Switching Feed Stream to Water




Curve 1 represents the (repeatable) flux-time curve obtained for the limestone suspension.
Curve 2 represents the flux-time curve obtained by starting up on the suspension and then
subsequently switching the feed to water.

On switching to water, the flux remains constant, and shows no noticeable decline. If the flux
decline in Period II was due to slow compression or chemical activity within the cake, this
decline would have continued on switching to water. If however the decline was due to finer
particles from the suspension progressively infiltrating the cake, the decline would be arrested
on switching the feed to water. On the basis of the above argument, Figure 2.6 indicates that
the flux decline in Period II is most probably due to fines infiltration into the cake, for the
system under study. (It is recognised that Figure 2.6 indicates other interesting aspects of
system behaviour. This is discussed in detail in Section 2.5.3.2.)

In summary, there are strong indications that the controlling processes responsible for flux-time
behaviour in the system under study are as follows :-

(a) The initial rapid decrease in flux is caused by an initial rapid increase in cake thickness.

(b) Thereafter the cake thickness remains relatively constant, but the cake is progressively
infiltrated by finer particles resulting in a slow decrease in permeability, and hence the
slow long term decline in flux.

It will be shown that the assumption that flux decline in Period 1I is caused by fines infiltration
yields viable explanations for various vanomalies" that were observed in the experimental study.

The expected cake thickness profile will thus be as depicted in Figure 2.7. In the rest of this
study, the maximum cake thickness i.e. that obtained at the end of Period I, will be referred
to as the steady-state cake thickness, and the corresponding flux the steady-state flux.

cake growth change in cake
period characteristics
(Period 1) (Period II)

\ “steady—state” cake thickness

Coke Thickness

1 I 1 1 t ! ! 1 1 ! 1 !
¢} 10 20 30 40 50 60 70 80 90 100 110 120 130

Time {minutes)

FIGURE 2.7 Expected Cake Thickness profile




2-14

The basis for the boundary between Periods [ and IT may now be outlined. The gradient of
the flux-time curve indicates the rate of decline of flux, or alternatively, the rate of increase
in resistance to permeate flow. It is expected that when cake growth becomes insignificant,
and fines infiltration the dominant cause of increases in resistance, a significant change in the
gradient of the flux-time curve would be observed. A typical [0,73!] vs profile is shown
in Figure 2.8. The curve was obtained by fitting an equation of the form :-

k, ke k
2 4. S5 <]
(kzt*kat T Tz"'ﬁ)
J, = Kkt

w

(2.3)

to the experimental flux-time data, and numerically differentiating the curve (J, is the flux

at time ¢and k, to k¢ are regression constants).
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FIGURE 2.8 Typical Flux Gradient Profile

The gradient changes substantially over the period t<30 minutes, and then remains
approximately constant. On this basis, the flux at 30 minutes was designated the approximate
steady-state flux, and thus the approximate boundary between Periods I and II. For the
experiments reported here, this steady-state point varied from = 25 minutes to = 32 minutes.
For convenience, all steady-state values are reported at | = 30 minutes.

-
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2.5.2

Effects of Operating Variables on Flux

The objective here is to determine the trends that flux-time behaviour and the steady-state
flux exhibit with respect to the superficial inlet velocity (U,), bulk concentration (Cz) and
pressure (P ).

For all results presented in Sections 2.5.2.1 to 2.5.2.3, the system was started up at the specified
operating conditions, with a strong emphasis being placed on reading the operating point as
soon as possible. Following the start-up procedure outlined in Section 2.3.2, the operating
point was generally reached within 30 seconds. The significance of this emphasis on start-up
procedure will become apparent in Section 2.5.3.

2.5.2.1 Effect of Superficial Inlet Velocity on Flux

The effect of superficial inlet velocity, U/, , on flux-time vehaviour is depicted in Figure 2.9

(linear scale) and in Figure 2.10 (log-log scale). All experiments were performed at the same
pressure, concentration and temperature with only the inlet velocity varying. Consistent with
previous studies [Dalheimer et al. (1970), Schulz and Ripperger (1989), Rautenbach and
Schock (1988), Saw et al. (1985)], the flux increases with, and is highly sensitive to, inlet
velocity. Of interest is the observation that the flux-time curves in Period Il are ali substantially
parallel. On a log-log scale, the gradient appears to be a function of velocity up to t=35
minutes, whereafter all gradients are substantially the same. This is somewhat different from
the results obtained by Dalheimer et al. (1970), where the log flux vs log time curves were
wholly linear and the gradient was independent of velocity.
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FIGURE 2.9 Effect of Inlet Velocity on Flux-Time Behaviour
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The effect of inlet velocity on the steady-state flux, chosen at ¢ = 30 minutes, is shown in
Figure 2.11. '
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FIGURE 2.11 Effect of Inlet Velocity on Steady-State Flux
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The flux shows a progressively greater dependence on velocity as velocity increases, and may
be represented by :-

J, « Uy (2.4)

There is general consensus in the literature that the steady-state flux increases with increasing
inlet velocity, although reported values for the exponents in equation 2.4 vary. In general
exponents are greater than 1 [Dalheimer et al. (1970) and Schulz and Ripperger (1987) :-

J,=xU.°, Rautenbach and Schock (1988) :- J,xU) 2], but Baker et al. (1985) obtained
exponents less than 1I.

From Figure 2.11, the trend that steady-state flux exhibits with inlet velocity may be represented
as i~ '
oS,
— > 0 (2.9)
ol/,

2%/, :
N > 0 : (2.6)

2.5.2.2 Effect of Bulk Concentration on Flux

The effect of bulk concentration, €5 , on flux-time behaviour is depicted in Figure 2.12 (linear

scale) and Figure 2.13 (log-log scale). Here, runs were performed at the same inlet velocity,
pressure and temperature, with only the concentration varying.

A significant dependence on concentration is exhibited. Once again, the flux curves in Period II
are substantially parallel. A further interesting observation concerns the rate of growth of
cake. For the highest concentration, it would seem that most of the cake has already been
deposited before the first flux measurement at 5 minutes after start-up. Thereafter, the curve
shows a slow decline and reaches the steady-state after = 20 to 23 minutes. For the lowest
concentration it is apparent that very little cake has been deposited during the first 5 minutes.
Thereafter the flux shows a substantial decline and eventually reaches its steady-state after =
35 minutes. There are thus indications that the rate of cake growth on start-up is a strong
function of concentration.
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The effect of bulk concentration on the steady-state flux is shown in Figure 2.14. Although
the curves in Figure 2.12 apparently reach the steady-state at around 25 minutes from start-up,
it can be seen that very little error in trends or values results from chosing steady-state fluxes
at 30 minutes from start-up.
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FIGURE 2.14 Effect of Bulk Concentration on Steady-State Flux

A plot of steady-state flux vs log concentration yields a linear curve (Figure 2.15), indicative
of a convection-diffusion controlled process (see Section 3.2.2).

There appears to be little consistency in the literature regarding the trend that steady-state flux
exhibits with concentration. Hunt et al. (1987b) obtained trends similar to Figure 2.14.
Saw et al. (1985) and Bertera et ai. {1984) observed that flux decreased linearly with the log of
the concentration, while Rautenbach and Schock (1988) observed a linear decrease of flux with
concentration. Further, Dahlheimer et al. (1970) observed that flux was relatively insensitive
to concentration, while Le {1987) found a non-linear relationship between flux and log
concentration. '
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For the system under study, the flux exhibits a strong, but progressively decreasing dependence
on concentration which may be represented as :-

(aJT) < 0 (2.7)
oC%

2%J
Vo > 0 (2.8)
B

2.5.2.3 Effect of Pressure on Flux

The effect of pressure, P, on flux-time behaviour is shown in Figure 2.16 (linear scale) and
in Figure 2.17 (log-log scale).  Here, the inlet velocity and bulk concentration were held
constant for all runs, while the pressure was changed. Similar to the flux-time responses
obtained at different concentrations and velocities, the curves are substantially parallel in
Period II.
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The effect of pressure on steady-state flux is shown in Figure 2.18. The steady-state flux
increases with pressure but shows a progressively decreasing dependence on it.
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FIGURE 2.18 Effect of Pressure on Steady-State Flux
Reported trends for the flux-pressure relationship also vary widely. Rautenbach and

Schock (1988) found that flux was independent of pressure, above a pressure of 100 kPa.
Saw et al. (1985) and Le (1987) noted that the flux actually decreased at high pressures,
presumable caused by compression and compaction effects. Harrison et al, (1981) observed a
local minimum on the flux vs pressure curve. The trends observed by Henry (1972) are similar
to Figure 2.18 i.e.,

(‘”‘") > 0 (2.9)
OP

(az“"“> < 0 (2.10)
oP? '




2.5.3 Operational Path Dependence of Flux-time Behaviour

There are indications in the literature that the flux-time behaviour may not be a unique function
of the operating variables but may also be a function of the operational path taken to reach
the operating point.  Harrison et al. (1981), for example, noted that the flux obtained by
starting up a system at a lower velocity and then increasing the velocity is not as high as that
obtained when the system is started-up at the higher velocity.

This section (2.5.3) entails an investigation into the operational path dependence of the flux-time
curve. In Section 2.5.2, the system was rapidly taken up to the operating point on start-up.
Effectively then the system experiences a step change up to the operating point at time zero
(t=0). The flux-time responses obtained by starting up at the desired operating points will
hereafter be referred to as the base curves. In this section the system is started up at conditions
below (and above) the operating point and step- increased (or step-decreased) to the desired
operation point after some finite time has elapsed. The flux-time responses are then compared
to the base curves.

2.5.3.1 Dependence of Flux-Time Behaviour on Path to Reach Operating Velocity

The system was started up at U,=1,13 m/s, P= 200 kPa, Cy= 39,4 g/¢, allowed to run for 10

minutes and the inlet velocity was then rapidly increased to 1,70 m/s, while keeping the pressure
constant. The experiment was then repeated, but allowing a run time of 60 minutes before
the step-increase. These specific time lapses were chosen in order to assess if system response
would differ depending on whether the step-change is performed in Period I or Period IL
These flux-time curves are contrasted to the high and low velocity base curves in Figure 2.19.

Curves 1 and 2 represent the base curves (the data points for the base curves have been excluded
for clarity). Curves 3 and 4 represent system responses obtained by step-increasing the velocity
after 10 and 60 minutes, the step-increases occurring at points A and B respectively. Curve 4
is coincident with curve 1 for most points but they may be differentiated by noting that curve 1
is a solid line while curve 4 is a dashed curve with data points included.

If the flux-time behavxour were not dependent on the operating path then it would be expected
that on increasing the inlet velocity at points A or B, the flux would rapidly increase to the
corresponding values on curve 2, and then follow that curve substantially. On increasing the
velocity during the cake growth period (point A), the flux declines at a slower rate and then
follows curve 2 approximately. On increasing the velocity at point B however, the flux continues
to follow the low velocity base curve. Clearly, starting up the system at the lower velocity and
then increasing the velocity yields a different flux-time response from that obtained if the
system is started up at the higher velocity.

The cake thicknesses at points A and B are greater than the corresponding cake thicknesses at
points C and D, by inference from the flux values at those points. In order for the flux to
increase in response to the velocity increases at points A and B therefore, the cake thicknesses
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must decrease. The observed flux response indicates that the cake thickness did not decrease,
possibly implying that the cake formation is irreversible. The observation that curve 3 did
eventually follow curve 2 closely can be explained by noting that the cake thickness at point A
is lower than the steady-state cake thickness for curve 2, point E. Thus, in response to the
flowrate increase at point A the cake merely grew at a slower rate and did eventually become
limited at the appropriate steady-state value for the higher flowrate.

There are strong indications therefore that the system will not respond to a velocity change

requiring a decrease in cake thickness, but will respond to one requiring an increase in cake
thickness.

System responses to a step-decrease in velocity are shown in Figure 2.20. Here, the system
was started up at U,=1,70 m/s, P=200 kPa, C4=39,4 g/¢t, and the velocity was reduced to
1,13 m/s after time lapses of 10 and 60 minutes.

[ ]
When the step-decrease is performed in Period I, the flux decreases rapidly and then follows
the low velocity base curve. By inference, the cake thickness increases and then follows the
cake growth profile of the low velocity base curve. When the step-decrease is performed in
Period II, the flux once again decreases, but levels off at a value somewhat lower than the low
velocity base curve. By inference, the final cake resistance is somewhat higher than that of
the low velocity base curve at that time. Clearly, the system does respond to a velocity change
requiring an increase in the cake thickness, but the response differs depending on whether the
change is performed during the cake growth period or the change in cake characteristics period.
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FIGURE 2.20 System Responses to Step-Decreases in Velocity

In Section 2.2.2 it was stated that feed samples were obtained directly from the well-mixed
feed tank, and not from any sample point upstream of the tube. The reason for this is clear
in the light of the above discussion. If a sample valve upstream of the tube is opened, there
will be an immediate disturbance to the velocity and pressure in the tube. This disturbance
could irreversibly changed the flux-time behaviour of the system.

2.5.3.2 Dependence of Flux-Time Behaviour on Path to Reach Operating Concentration

System response to a step-decrease in concentration was ascertained by starting up the system
at P= 200 kPa, U, = 1,42 m/s, C3= 77,6 8/¢, and then switching the feed to water (Cy=0 8/
after periods of 10 and 60 minutes, while keeping the velocity and pressure constant (Figure 2.21).

If the cake formation was fully reversible, the cake thickness would have progressively decreased
on switching over to water, until the pure water flux was reached. Figure 2.26 clearly indicates
that the hydraulic resistance did not change appreciably, indicating conclusively that the cake
formation was irreversible. The probability that the cake was removed and that the hydraulic
resistance was being provided by particles within the pores of the tube wall may be discounted

since on cleaning the tube it was confirmed that a substantial cake still existed.in the tube.
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FIGURE 2.21 System Responses to Step-Decreases in Bulk Concentration

The observation that the cake is irreversible is not unique. Rushton et al. (1979), in an earlier
study also observed that on pumping water over a cake, some critical shear needs to be exceeded
before particle removal will occur. Krause (1974) notes that many filter cakes once formed
are not easily removed. Further, Baker et al. (1985) have noted that in some of their experiments,
the cake was sufficiently cohesive to remain on the tube wall until backwashed.

Monitoring the turbidity of the reject stream in the view-glass during the course of the above
experiment led to some interesting qualitative observations. On switching the feed to water
the turbidity progressively decreased, and the reject stream was clear to the eye after about 4
minutes. At the conclusion of the above experiment, the inlet velocity was progressively
step-increased in steps of approximately 0,28 m/s, with water as the feed stream, while
maintaining the pressure constant. ~ With each step in velocity, a "puff™ of slightly turbid water
appeared in the view-glass and then rapidly cleared away. The concentration of each puff
seemed to be very low, and further, no significant change in the permeate rate was noted.
Each puff generally lasted for a few seconds and then the reject stream remained clear until
the next step-increase in velocity.

Clearly, with each step-increase in velocity, a few layers of particles were being stripped off
the cake. However, the resultant change in cake resistance was insufficient to significantly
change the permeate rate. This possibly indicates that the cake removal prBE:ess was being
limited by the shear at the cake surface, and indicates that some critical shear stress needs to
be exceeded in order to remove cake particles. Thus, with each increase in velocity a few
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layers of cake, whose critical shear for removal was now exceeded, were stripped off into the
bulk flow. Further, since only a few layers of particles were removed with each velocity
increase, it would seem that this critical shear for removal is not uniform through the cake but
possibly increases towards the wall. At very high velocities it would be expected that sufficient

cake would be stripped off to significantly increase the flux. For the operating range investigated
here, however, this did not occur.

System responses to a step-increase in concentration are shown in Figure 2.22. The system
was started up at a concentration of 19,8 g/ and the feed was switched to a second feed tank
containing a suspension of 77,6 g/¢ after periods of 10 and 60 minutes.
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FIGURE 2.22 System Responses to Step-Increases in Bulk Concentration

The flux-time responses are similar to those obtained by the step-decrease in velocity. When
the step-increase in concentration is performed in either Period Ior Period II, the cake thickness
increases with a corresponding decrease in flux. When the change is performed in Period II
however, the flux drops to a level somewhat below the high concentration base curve.

v

2.5.3.3 Dependence of Flux-Time Behaviour on Path to Reach Operating Pressure

System response to a step-decrease in pressure was investigated by starting up“.the system at a
pressure of 200 kPa and then reducing the pressure to 100 kFa after intervals of 10 and 60
minutes, while keeping all other operating variables constant (Figure 2.23).
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System Responses to Step-Decreases in Pressure

In both instances, the flux obtained after the step-decrease are substantially lower than the
corresponding values for the low pressure base curve, On comparing the normalised fluxes
(i.e. flux/pressure) before and ‘after the step changes, it is seen that they are similar (Table 2.2),
indicating that the hydraulic resistance did not decrease significantly. This further confirms
the irreversibility of the cake formation.

TABLE 2.2

Normalised Fluxes Before And After Pressure Decreases

Lapse time before pressure

Normalised Flux

Normalised Flux

decrease ) before decrease after decrease
(minutes) (¢/m2h)/(100 kPa) (¢/m2h)/(100 kPa)
10 407 431
60 298 309

.
i

System responses to step increases in pressure are shown in Figure 2.24. Here start-
at 100 kPa and the pressure was step-increased to 200 kPa in both periods.

~

up occurred
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FIGURE 2.24 System Responses to Step-Increases in Pressure

In Period I, the flux increases to a value higher than the high pressure base curve, decreases
rapidly, and then levels off at a value slightly below the high pressure base curve. If the
normalised fluxes are considered (Flux/100 kPa = 608 at point A and 419 at point C), it is seen
that the cake thickness at point A is actually smaller than the cake thickness at point C. Hence,
after increasing the pressure, the system experiences the same permeate driving force as at
point C, but has a lower hydraulic resistance. The flux thus increases to above point C. The
lines between points A and E (and points B and F) do not represent the actual path described
by the flux, but have merely been drawn in to indicate continuity between data points. Point
E represents the flux value five minutes after the pressure increase at point A, A more realistic
representation of the flux response may be obtained by extrapolating curve 3 back to the line
t=10 mmutes (Figure 2.25). Here points A and A’ represent the flux immediately before and
after the pressure increase. It is seen that on doubling the pressure at point A, the flux
immediately doubles. Thereafter cake growth occurs, decreasing the flux, and the cake eventually
becomes limited at a value slightly higher than the high pressure base curve.

In Period II, the flux exhxbxts a similar behaviour, but drops to a value substantially below the
high pressure base curve, " eventually approachmg the low pressure base curve. Once again, as
in the instance of a flowrate decrease or a concentration increase in Period 11, the final resistance
obtained by increasing the cake thickness in Period II is greater than that obtained in the base
case. In the instance of a pressure increase, this difference is substantial.
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Curve 4 in Figure 2.24 indicates that approximately 60 minutes after the pressure increase, the
flux has dropped to the value it had before the increase. Further, it is clear that curve 4 is
asymptoting to the low pressure base curve. This could erroneously be interpreted as indicating
that flux is independent of pressure. It must be noted however that this apparent independence
is uniquely obtained when a step-increase is performed in Period II. When the system is started
up at different pressures, the flux is most certainly a function of pressure, for the system under
study (Figure 2.16). Dahlheimer et al. (1970) performed an experiment similar to that above
i.e. step-increased the pressure and monitored the flux response. After an hour, the flux had
returned to the value it had before the increase. This was interpreted as indicating that the
flux was relatively insensitive to pressure. In view of the above statements, this could possibly
have been an erroneous conclusion.

2.6 SUMMARY OF EXPERIMENTAL STUDY

The characteristic flux-time curve may be divided into two regions - Period I, where the flux
decreases rapidly, followed by Period Ii, where the flux exhibits a slow, long-term decline
with time. The rapid decrease in Period I may be attributed to a rapid increase in cake thickness.
Thereafter, the cake thickness levels off to some steady-state value, but changes within the
cake lead to the slow long-term decline. There are indications that, for the system under study,
the slow decline in Period II is due to the progressive infiltration of fines into the cake, leading
to a cake of progressively decreasing permeability.
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The limiting or steady-state permeate flux, is a f unction of inlet velocity, bulk concentration
and pressure. The trends that the steady-state permeate flux exhibits with respect to these
operating variables are summarised in Table 2.3 :

TABLE 2.3 Summary of Effects of Operating Variables on Steady-State
Permeate Flux
Operating Variable Effect on Steady-state flux
Inlet velocity (&J ..) )
_—_ > 0
oU,
3J,
— > 0
aly
Concentration (ajw)
by < 0
aC,
(aZJ,
' - > 0
aCy
Pressure (a “) > 0
P
5)
< 0
JP?

There are unequivocal indications that the flux-time behaviour is dependent on the path taken
to reach the operating point. If the operating path includes a change in operating variables
that requires a decrease in cake thickness in order to be effective, the system will not respond
as expected. This is due to an apparent irreversibility of the cake formation. There are

indications that this irreversibility is due to the cake removal being limited by the shear stress
at the cake surface.

If the change in operating variables requires a further growth in cake, system response will
differ slightly depending on whether the change is performed during Period I or Period IL. If
the change is implemehted during Period 1, the final flux, and hence cake resistance, will be
similar to that obtained by starting up at the "thicker cake" condition. When the change is
performed in Period II, the final cake resistance is slightly higher than that obtained by starting

up at the "thicker cake" condition. This difference is substantial in the instance of a pressure
increase. '
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CAIIIO{QF 3

QUALITATIVE MECHANISTIC MODEL
| OF
STEADY-STATE CONDITION

3.1 INTRODUCTION

The major characteristic of a cross-flow microfiltration (CFMF) system is that after an initial
period of rapid decline the permeate flux either remains constant or alternatively decreases at
a relatively slow rate. This behaviour may be explained in terms of the cake growth dynamics.
On start-up the cake rapidly increases in thickness and then became limited at some maximum,
or steady-state value. This steady-state cake thickness, and hence the steady-state permeate
flux, is a function of the suspension velocity, suspension bulk concentration and operating
pressure, After the steady-state cake thickness has been attained, the cake experiences changes
in its characteristics resulting in the long-term slow decline in flux.

This chapter concerns the development of a model to describe the steady-state condition. The
main objective here is to develop and present a clear, physically realistic and consistent picture
of the mechanisms that determine cake growth and its eventual limit. To that end the model
is developed and presented qualitatively. This qualitative model will be formulated into a
mathematical model in Chapter 5.

3.1.1 A Note on State and Measured Variables

In Chapter 2, the global effects of superficial inlet velocity, pressure and concentration on
permeate flux were identified. This superficial velocity, U,, is given by :-

7 Q
U, = (3.1)
: nR? _
where U, = superficial inlet velocity (bulk average} (m/s) -
Q = suspension inltet flowrate (m3/s).
R = tube radius (m).
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The permeate flux, s, , was based on the circumferential area of the tube :-

g, = 2o (3.2)
2nRL
and is related to the permeate velocity at the wall, V, , by :-
1 1 s l
%4 = J —_ — 3.3
w “ 3600 1000 (h)(ma) 5:3)

where J, = permeate flux at tube wall (¢/m2h)

Q, = permeate flowrate (m3/s)

L = length of tube (m)

V. = permeate velocity at tube wall (m/s)

If it is assumed that the cake grows until some form of hydrodynamic balance is established
at the cake surface, the velocities of significance in this balance will be the permeate velocity
at the cake surface, V.., and the axial velocity in the free channel, U,, given by i~

Ve = sk (3.4)
2n(R-t.)L
v, = -—Q——z : (3.5)
n(R-t.)
where V., = permeate velocity at cake surface_(m/s)
U, = axial velocity in free channel (m/s)
t, = ¢ake thickness.

These velocities, V., and U, , are the "true” velocities seen by particles at the cake surface, and

are referred to as the state velocities. These are related to the measured velocities, V, and
U,, by:-

— _ R? '

Uc = Usm (36)
R

Vcs. = Vw'(Rj'j‘ . (3.?)

If the cake thickness is significant in relation to the tube radius, the state velocities and measured
velocities could differ appreciably in value., Implications of this are seen in, for example, the
experiments conducted to ascertain the effect of suspension concentration on permeate flux.
Although the experiments were conducted at a constant superficial inlet velocity, the steady-state
cake thickness would have increased with concentration, by inference from the steady-state
fluxes (see Figure 2.14). This implies that the free channel velocity, U,, increased with
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concentration, Thus, although the inlet velocities measured by the experimenter were constant

for all concentrations, the actual velocity that determined the system behaviour increased with
concentration,

Despite the difference in value between state and measured velocities, it is expected that trends
expressed in terms of the state velocities will be similar to trends expressed in terms of the
measured velocities, since V. and U, are positive, monotonic functions of ¥, and U,
respectively. Thus,

] °F Y s o th 2 0
tf oU en oU . g

if (aV”) > 0 the (avﬂ) > 0
oF " oF

where F is some arbitrary variable. It is feasible, however, that the trends exhibited by the

second derivative may differ in certain instances, depending on whether V., and U, or V,
and U, are used. '

The purpose of the above discussion is solely to highlight the fact that a difference may exist
between the velocities measured by the experimenter and the velocities "seen" by the system.
Clearly, the variables of practical interest are the measured variables and any model must
eventually relate v, to U,. P and C;. However, in developing the mechanistic basis for the
model, or evaluating the mechanistic bases of other models, it is invariably V., and U, that
will be significant in determining drag forces on particles, axial shear stresses on cake surface,
diffusion coefficients etc. Most previous modelling attempts reported in the literature have
concerned either planar systems, or systems in which the cake thickness is negligible in comparison
to the tube radius. In those instances, clearly, the state and measured velocities are equivalent.
In reporting literature in the present study, an attempt will be made to interpret variables as
being either state or measured, in order to ensure consistency with the present study. Thus,
in instances where a previous worker has merely referred to axial velocity, it will be interpreted
here as being either a superficial velocity, U, or a channel velocity, U.. Similarly, where a
previous worker has referred to permeate velocity, it will be reported here as being either the
permeate velocity at the tube wall, V', , or the permeale velocity at the cake surface, V .

3.2 STATEMENT OF PROBLEM AND LITERATURE REVIEW

The driving force for cake growth is the convection of solids towards the cake by the radial
fluid flow. Even after the steady-state cake thickness has been attained, solids will still be
convected towards the wall, Hence some mechanism must exist to offset this cake growth
driving force and prevent these "excess" particles from becoming incorporated into the cake
structure. It is the identification of this mechanism that poses the greatest problem in the
modelling of the steady-state in CFMF. )



Earliest attempts at modelling CFMF-type of behaviour involved the solution of the
Fickian-diffusion equation using the classic Leveque solution for convective diffusion (film
theory) [Blatt et al. (1970), Romero and Davis (1988)]. In that approach, the steady-state is
attained when the convection towards the wall is balanced by a Brownian back-diffusion away
from the cake. However, when this theory is applied to the UF of colloids or the CFMF of
particles, using the Stokes-Einstein Brownian diffusivity coefficient, predicted fluxes are orders
of magnitude below that observed experimentally [Blatt et al. (1970), Reed and Belfort (1982)].
The possible reason for this is that the Stokes-Einstein diffusivity for even small particles is
extremely small, being inversely related to particle size. It was subsequently suggested that
either the back diffusion of particles was substantially greater than that predicted by the
Stokes-Einstein equation, or that the polarised layer did not provide the controlling hydraulic
resistance to permeate flow [Blatt et al. (1970)]. Porter (1972) showed that the latter argument
was highly unlikely and further proposed that the back diffusion of particles could be augmented
by a radial migration of particles away from the cake.

Subsequent modelling approaches may be classified into 4 main categories : force-balance models,
enhanced back-diffusion models, axial convection models and scour or erosion models. Significant
studies in this regard are reviewed below. Most of the models have been developed for laminar
flow CFMF, They are included here for completeness and since it is feasible that even in
turbulent systems the controlling processes may occur in the laminar sublayer.

3.2.1 Force Balance Models

In this category of models, the forces acting on individual particles are considered. The
steady-state is attained when some particular balance of forces is achieved.

3.2.1.1 Inertial Lift (Lateral Migration) Models

Neutrally buoyant particles in a laminar flow field tend to experience an inertial lift force
which causes a migration away from the wall to some equilibrium position between the wall
and centreline [Altena and Belfort (1984)]. The phenomenon has variously been termed the
Poiseuille effect, the tubular pinch effect and the inertial lift effect. Porter (1972) initially
suggested that this inward migration could offset the convection of solids towards the wall.
The most recent and comprehensive models based on the inertial lift theory are those of
Belfort et al. [Altena and Belfort (1984), Green and Belfort (1980), Belfort and Nagata (1985)]

In the inertial 1ift model it is proposed that particles are subject to two significant forces viz
a fluid drag force, F, , directed towards the wall and the inertial 1ift force, F,, directed away
from the wall. These correspond to a lift velocity, V,, and a permeation velocity, V¢
(Figure 3.1). When the permeation velocity exceeds the lift velocity, particles convect to the
wall and cake growth occurs. Cake growth becomes limited when the lift velocity equals or
exceeds the permeation velocity. '

e
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FIGURE 3.1 Inertial Lift Model

The general form of the lift velocity is given as [Green and Belfort (1980)] :-

ka
Vv, = k, U, Re (r—‘-'i) h,(r) (3.8)
R.
where V, = lift velocity on particle {m/s)
7 = suspension velocity in free channel (m/s)
Re = Reynolds Number (based on U, and R.)
R, = radius of free channel (m) (= R-t.)
ro = particle radius (m)
h,(r) = some function of radial distance
k;. kg = constants {> 0)

It is seen that the 1ift velocity increases as particle size increases. Further, for a specified
particle size and permeation velocity, V., some minimum axial velocity exists above which
V,>V,. and hence no convection towards the wall will occur,

Green and Belfort (1980) combined an inertial lift equation with an hydraulic resistance equation
and applied the model to the data obtained on a latex suspension. The effect of cake growth
on U, , and hence on V, was explicitly included. Predicted fiuxes were in order of magnitude
agreement with experimental observations, although the predicted cake thickness occupied over
70 % of the channe!l. The inertial lift model was also tested on the data of Thomas et al. (1973)
and Reed et al. {1980), who had measured the critical axial velocities necessary to prevent
catastrophic fouling in UF and HF systems. It was shown that the observed critical velocities
were consistent with the predictions of the inertial lift model. '



The applicability of inertial lift theory to turbulent CFMF is questionable. As noted by Romero
and Davis (1988), most inertial lift models are generally limited to dilute suspensions of
non-interacting particles and cannot be applied close to the wall. Zydney and Colton (1986)
state that the "model fails to predict a dependence on bulk particle concentration”. This is not
strictly correct since the right hand side of equation 3.8 is a function of concentration via the
Reynolds Number. However, in general the Reynolds number would only show a significant
dependence on concentration at high concentrations, or for suspensions whose viscosity is a
strong function of concentration. Noting that the inertial lift effect is inapplicable under such
circumstances, Zydney's statement is, in effect, valid. The lateral migration model has found
limited favour with Baker et al. (1985) and Hoogland et al. (1988), who note that the model
does explain their observations that finer particles are preferentially deposited as the axial
velocity is increased.

3.2.1.2 Critical Drag or Critical Shear Models

Rautenbach and Schock (1988) and Fischer and Raasch (1986) proposed that a critical force
balance condition existed for particle stability on a -cake (or membrane) surface. Below this
critical condition particles which reach the cake surface will deposit stably. At or above this
critical condition, particles which reach the surface will be destabilised and will not deposit.
Conceptually, the work of Fischer and Raasch is not significantly different from that of
Rautenbach and Schock, and only Rautenbach and Schocks’ model will be detailed here.

Rautenbach and Schocks’ critical condition is derived by an equilibrium of drag forces normal
and parallel to the membrane (Figure 3.2).

F,g = oxial drog force
de = permeate drog force
F, = friction force
= 1;' F;:;d axial velocity
profile
Fp d

Uiy
membrgne e o ee e cm— — — U — — —— -
| |

1 l

permeate V
[

FIGURE 3.2 Critical Drag Force Model
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nd?

p Uy — 2 ¥ Cp (3.9)

DN =

where drag coefficient for spheres

| &

mean axial velocity over particle (m/s)
friction coefficient (or proportionally constant)

©

it

permeate velocity (m/s)
particle diameter (m)
suspension density (kg/m3)

T A e
[l

Rautenbach and Schock reduced equation 3.9 to the form

v, 2 v V

p

(3.10)

cs

and utilised the Universal Velocity Profile for turbulent flow to evaluate U,. In the near wall

region, the universal velocity profile may be differentiated into three zones : the laminar zone,
the laminar/turbulent intermediate (or buffer) zone and the fully turbulent zone (see
Section 3.4.2). This led to three expressions for U, and hence V., , depending on the particular
zone being considered.

Laminar zone : d

Ve « Re"”(gﬁ)(ﬁ) (3.11)
Buffer zone : a o+

v, « Re"zc’(é\—/k—)(é—k) (3.12)
Fully turbulent zone : v d \7

Vi Rel'o(é—g)(ﬁ) (3.13)
where Re = Reynolds Number

v suspension kinematic viscosity (m2/s)

i

It was found that the best agreement between experiment and theory was given by equation 3.12.

The correspondence between the model and Rautenbach and Schocks® experimental observations
is quite impressive. Rautenbach and Schock obtained steady-state fluxes for clay/water and
quartz/water suspensions at concentrations ranging from 1 % to 15 % by volume in thin tube,
as well as channel, modules. When the fluxes are plotted against the right hand side of
equation 3.11, all points lie along a straight line. The proportionality constant, reported in
Schulz and Ripperger (1989), is given as 0,22 y~', with y = 4 680. Schulz and Ripperger (1989)
applied the model to various systems and found a good correspondence between predictions
and observations. Various workers [Harrison et al. (1981)] have observed that the average
particle size of the cake decreases as the operating velocity is increased. This is explicable in
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terms of Figure 3.2 by noting that at a specific velocity, particles above a certain size will be
destabilised while particles below a certain size will deposit, leading to a preferential deposition
of small particles as the velocity is increased. In Section 2.5.3.2 it was observed that layers of
the cake were progressively removed as the velocity was step-increased. This is also seemingly
explicable in terms of a critical drag force model.

A flaw with equation 3.12 is that no pressure dependence of flux is predicted. This is consistent
with Rautenbach and Schocks® experimental results, where fluxes were independent of pressure
over the range 100 kPa to 200 kPa. The results of the present, and other studies [Henry (1972),
Saw et al. (1985), Le (1987)], however, indicates that flux can exhibit a dependence on pressure,
indicating that equation 3.12 may not be generally applicable. It is in principle feasible, however,
to couple equation 3.12 with a hydraulic resistance equation potentially yielding a model that
will show a pressure dependance of flux.

Comparison between model predictions for the effects of concentration and velocity on
steady-state flux with the results of this study requires that the steady-state cake thickness be
known. Re in equation 3.12 should be based on the suspension velocity in the free channel,
U., and not on the superficial velocity, U,. Similarly V., in equation 3.12 is the permeate
velocity at the cake surface and not at the tube wall, V,, .

Since the steady-state cake thickness were not known, the model was tested at two extreme
limits i.e. a minimum cake thickness of 0,0 mm and a maximum thickness of 2,0 mm. A typical
comparison is shown in Table 3.1,

TABLE 3.1 Comparison Between Fluxes Predicted by Rautenbach and
Schocks’ Model and Experimental Results Obtained in This
Study
Assumed Cake thickness Flux at cake surface (J.)
(mm) (¢/m2h)
Rautenbach and Schocks’ This experimental study
Model
0,0 88,6 638
2,0 141 758
Data for Run 48
U, = 1,42 m/s
Cs = 39,4 g/¢
P = 200 kPa

1 Suspension physical properties were calculated using the expressions in Section 5.4.6.



The fluxes predicted by equation 3.12 are considerably below experimental observations in both
extreme cases. It is possible that the poor fit may be due to the proportionality constant being
a function of the specific system, and hence inapplicable to the limestone system studied here.
It is thus more instructive to compare the trends predicted by the model with the trends observed
in this study. From equation 3.12 it is seen that I, and hence J ., , scales with T1* . This
trend is depicted in Figure 3.3 for the particle properties and velocity range considered here,
and exhibits a similar trend to that observed experimentally (equations 2. 5 and 2.6).
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FIGURE 3.3 Trend for Effect of Inlet Velocity on Steady-State Flux, as
Predicted by Rautenbach and Schock’s Model

The trend predicted for the effect of concentration on steady-state fiux (Figure 3.4) is however,
substantially different from observations (Figure 2.14, equations 2.7 and 2.8). Over the
concentration range considered here the model predicts that the flux is virtually independent
of concentration. From equation 3.12 it is seen that V., scales with v~%2  This indicates that
the model would only predict a significant dependence on concentration at high concentrations
and for suspensions whose viscosity is a strong function of concentration. Further, noting that
the steady-state cake thickness increases with concentration (by inference from Figure 2.14) it
is seen that for a constant inlet velocity the channel velocity, U, , will also increase as concentration
increases. Since V., is a stronger function of channel velocity than of kinematic viscosity (V es
scales with U!®* and v %) it is most probable that if the increase in U/, with concentration
is incorporated into Figure 3.4, the model will predict an increase in flux with concentration.
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Clearly, while the model predicts correct trends with respect to velocity, no trend is predicted
with respect to pressure and the predicted trend with respect to concentration is contrary to
experimental observations.
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FIGURE 3.4 Trend for Effect of Concentration on Steady-State Flux, as
Predicted by Rautenbach and Schock’s Model

A second criticism of the mode!l stems from the observation that the best fit is provided by
equation 3.12, the buffer zone equation. Rautenbach and Schock also note that this is surprising
since with the small particle size concerned it would be expected that the demixing zone would
occur in the laminar region. This discrepancy is best visualised by comparing the theoretical
thickness of the laminar zone with the particle sizes used in their experiments. For the conditions
used in those experiments, the theoretical thickness of the laminar zone ranges from 40 to 80
um 2. In contrast the particles had an average size of 2 to 2,5 um. Further, particles "on the
surface” will in fact be embedded partially below the mean cake surface, further decreasing
their protrusion into the flow field. Thus, particles will unequivocally lie within the laminar
zone and very little physical basis exists for the application of the equation 3.12. Rautenbach
and Schock propose that the presence of particles may destroy the laminar zone and thus enable
particles to be affected by forces in the intermediate zone. In Section 3.4 it will be shown that
it is most likely that particles will dampen out turbulence and thus increase the.laminar zone.

2 Caleulated using equation 3.44 with suspension properties and operating velocities obtained from Rautenbach
and Schock (1988)



1t is feasible, however, that the radial flow through the wall may reduce the thickness of the
laminar zone (this is discussed in Section 3.4). However, if any substantial change to the velocity
profile occurs then equations developed from the universal velocity profile may no longer be
applicable and the forms of equations 3.11 to 3.13 would have to change. It would seem
therefore that various contradictions exist between the best fit equation and the fluid dynamics
and particle geometry in the near wall region.

There are further conceptual inconsistencies with models based solely on a critical drag force
or critical shear stress concept. These form a major part of the discussion in the chapter on
Mode! Development, and are postponed to Section 3.6.

3.2.2  Enhanced Back Diffusion Models

In this class of models it is proposed that the convection of solids towards the wall is offset by
a simultaneous back transport from cake to the bulk suspension. The steady-state is attained
when these rates equalise, and may be represented by the one dimensional Fickian diffusion
equation :

aC
vC = D— (3.14)
or
where I/ = permeate velocity {or flux, depending on the units for D)
c = concentration
D = diffusion coefficient

In contrast to the simple concentration polarisation models, however, the diffusivity used in
the solution of equation 3.14 is not the Stokes-Einstein diffusivity, but some alternative
diffusivity that has a substantially higher value.

On integrating equation 3.14, a linear relationship between flux and log concentration is predicted
[Fane et al. (1982)]. This is consistent with flux-concentration relationship observed in this
study (see Figure 2.15). This point will be pursued further in Section 3.6, Model Development.

3.2.2.1 Shear Enhanced Back-Diffusion

Prior to reviewing models based on shear enhanced back diffusion, it is instructive to briefly
review the concept. :

When a suspension is subjected to a viscous shear field, particle-particle interactions result in
a displacement of particles from the bulk flow streamlines. A marked particle will subsequently
exhibit a random walk behaviour, termed self diffusion. If a concentration gradient exists in
the suspension then a particle in any given plane will experience a greater number of interactions
with particles on its side that has the higher concentration than on its side with the lower
concentration. This causes a net drift of particles in the direction of decreasing-concentration,
the drift velocity being proportional to the concentration gradient. This net drift down a
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concentration gradient may be characterised by an effective particle diffusivity, the shear
induced dif fusivity {[Davis and Leighton (1987)). This process has variously been termed shear
induced hydrodynamic diffusion and shear enhanced diffusion.

Ekstein et al. (1977) investigated this effective particle diffusivity by tracking labelled particles
in a Couette device. The diffusivity increased with the square of the particle radius and linearly
with the shear rate. It was also found that the diffusivity increased linearly with concentration
up to a volume fraction of 0,2 and thereafter remained constant at a value :-

D,, = 0,03r%y , (3.15)

ps

where D, shear induced diffusivity of particle (m2/s)

ro particle radius (m)
shear rate (s-1)

Recently, Leighton and Acrivos (1987a, 1987b) showed that this apparently constant value above
a volume fraction of 0,2 was due to a geometric limitation in the apparatus of Ekstein et al.
With the elimination of these limitations the diffusivity was found to increase rapidly with
concentration. Their measurements were represented by an empirical correlation {Leighton and
Acrivos (1986)]:-

D, = rayD (3.16)
with

D = 0,33C3%(1+0,5e%%) ' (3.17)
where C = volume fraction of solids.

Equation 3.17 was found to be valid up to C = 0,5.

Zydney and Colton (1986) proposed that the discrepancy between the simple concentration
polarisation model, using the Stokes-Einstein diffusivity, and experimental observations could
be attributed to an augmentation of particle back transport by the shear induced diffusion
mechanism. They incorporated Ekstein’s expression for the diffusivity into the Leveque equation
for the local mass transfer coefficient yielding

1

443
r
k.(x) = 0.0SZ(—”) Yo (3.18)
. X _
where k,, = mass transfer coefficient (m/s)
Y. = shear rate at the wall (s-1) ”
x = axial coordinate (m)



Substituting this into the Fickian Diffusion equation and integrating along the length of the
tube, L, vields :-

rt\? C
Ve = 0,0?8(—") Yo ln(—"—') (3.19)
L Cs
where V., = length averaged permeate velocity (m/s)
C, = concentration at the wall (volume fraction)
€, = bulk concentration (volume fraction)

Evaluation of equation 3.19 on twelve sets of data showed that the model yielded better agreement
with experimental observations than previous models.

Explicit in the model is the assumption that the flux has reached some pressure-independent
value. Zydney and Colton seem to regard this "pressure independence of flux" asa characteristic
behaviour of CFMF systems. Clearly equation 3.19 can only apply to laminar systems which
exhibit a pressure-independant behaviour. The shear induced diffusion mechanism could
however, apply in the laminar sublayer of turbulent system.

3222 Turbulent Back Diffusion

Hunt (1987a, 1987b) proposed that in turbulent CFMF systems, particles will be transported
down a concentration gradient by turbulent eddies and their motion could thus be characterised
by an effective turbulent dif fusivity. Following Flemmer et al. (1982), this diffusivity is given
as :-

D = ko Ut (3.20)
where D- = particle diffusivity (kg/ms)

ke, = proportionality constant

U = friction velocity

= \/7”
P
with <, = shear stress at the cake surface.

The turbulent diffusion of particles would result in a back transport from the cake to the bulk
suspension. When the rate of this back diffusion is exceeded by the rate of convection to the
wall, cake growth occurs. Cake growth is accompanied by both a decrease in the rate of
convection to the wall and an increase in the rate of back transport, leading eventuaily to a
cake thickness at which these rates are equal. This defines the steady-state condition, whereafter
no net particle transport to the cake will occur.

A



The Hunt model entails the simultaneous solution of the steady-state mass balance and the
hydraulic resistance equations :

mass balance : T one
J'C° = D — (3.21)
or
pressure balance : w, J t
: AP = ._._.__E (3.22)
K™ p,y
where J = permeate flux (kg/m2s)

0-
!

concentration (mass fraction)
pressure difference across cake (Pa)
p, = fluid viscosity (PaS)

>
S
Il

p, = fluid density (kg/m3)
K~ = cake permeability (m2)
t. = cake thickness (m)

It was assumed that the bulk of the mass transfer occurred within a thin concentration boundary
layer close to the cake surface. Based on the non-dimensional distance coordinate in turbulent
flows (see equation 3.43) it was proposed that the boundary layer thickness could be represented
by :-

v
6 = k 10 ? (3 '23)
where & = boundary layer thickness (m)
k,; = a constant
v = suspension kinematic viscosity (m2/s)

Using the Blausius equation for friction factors in smooth tubes, the friction velocity required
in equations 3.20 and 3.23 was modelled as:

. _ v 1/8
u = ky Uc(ﬂ) (3.24)
where k,, = a constant

Integration of equation 3.21 over the boundary layer requires the relationship between flux and

radius. On the assumption that the axial velocity profile may be approximated by plug flow,
this relationship was given as ;-

Jry = J, (3.25)

I
R
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where J'(r)= flux at radius r in the boundary layer (kg/m?2s)

Jo flux at tube wall (kg/m2s)
R, radius of free core (m)

Substituting equation 3.25 into equation 3.21 and integrating over the boundary layer with
boundary conditions :-

at r = R,-6 C = C,
r = R, c = £,
yields
—s v 174 C,
ke U2 |7%) ln[c—J
J = P - (3.26)
1% @]
V .k
L Jg ¢
AP = F °__c , (3.27)
p; K
where k7,3 = constants
C, = boundary concentration

The model has four parameters :- kK, , k3, Coand K'. Hunt evaluated these parameters for

a limestone suspension by regression on experimental results (Table 3.2). Comparison between
the regressed model and experimental observations was good except at low concentrations, where
predictions tended to be too high.

TABLE 3.2 Hunt’s Regressed Parameters for a Limestone Suspension
Parameter Regressed Value
C, _ : 0,5465
k., 3,752 x 10-8
ks - 4914
K’ 3 - 1,262 x 10-15
|

A comparison was made between model predictions and experimental fluxes obtained in this
study, using the regression parameters from Table 3.2. Evaluvation of model predictions for
the effect of inlet velocity on steady-state flux was not possible since the model did not converge
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for two of the velocities studied here (the reason for this non-convergence will be discussed
shortly). However, the general trend predicted by the model (Figure 3.5) is consistent with the
trend observed in this study {equations 2.5 and 2.6).
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The model also predicts the correct trend for the effect of concentration on steady-state flux,
although the predicted values are substantially below observations (Figure 3.6). Although the
regression parameters were evaluated on a limestone suspension, it is not unexpected that the
predicted and experimental fluxes differ since the limestone used in this study could possibly
have had a different size distribution and specific cake resistance from that used by Hunt.

The trend predicted for pressure is not consistent with the trend observed in this study
(Figure 3.7). Experimental fluxes show a decreasing dependance on pressure while predicted
fluxes show a linear, almost increasing, dependance. It has been shown by Pillay et al. (1989)
that the incorrect pressure trend could be due to the model assumption that the cake is
incompressible. Incorporating a compressible cake resistance equation into the model does yield
the correct trend for flux dependance on pressure [Pillay et al. (1989)].
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Seemingly, the turbulent back diffusion model can yield the correct trends for flux dependance
on velocity and concentration. Incorporation of a compressible cake expression into the model
could result in the correct trend for the effect of pressure on flux. There are however, major
mechanistic inconsistencies with a model based on the assumption that particles experience a
turbulent back diffusion from cake to bulk suspension. This forms a major part of the chapter
on Model Development and is postponed to Section 3.6.

There are, however, some significant errors with Hunt’s model, which will be detailed here.
For most of the data points on which Hunt's regressions were performed, the predicted boundary
layer thicknesses are greater than half of the tube radius, and in some instances greater than
the radius. Clearly boundary layer thicknesses that are greater than half the radius contradict
the entire concept of a concentration boundary layer, and thicknesses greater than the radius
are physically impossible 3. This unrealistic boundary layer thickness is the major cause of the
non-convergence of the model in certain regions, the non-convergence occurring when the
boundary layer thickness exceeds the tube diameter.

Secondly, equation 3.25 is most certainly wrong. J 5 in equation 3.25 should be the flux at the

cake surface and not the flux at the tube wall. For the typical cake thicknesses achieved by
Hunt (2 mm to 7 mm in a tube of radius 14 mm) a significant difference would exist between
the fluxes at the cake surface and tube wall. There has apparently been a confusion between
the state and measured variables. Attempts to re-regress Hunt’s model using the correct
formulation for equation 3.25 proved unsuccessful, the regression package used being unable
to locate an optimal set of parameters.

3.2.3 Axial Convection Models

The axial convection models propose that the convection of solids towards the wall is offset by
a simultaneous axial convection of solids along the wall and out of the tube (Figure 3.8).

Leonard and Vassilieff (1984) proposed a simple convection flow model in which analytical
solutions were obtained for the particle layer by assuming that the velocity profile in the vicinity
of the layer was linear and that the layer could be regarded as either an immobile solid or a
Newtonian fluid with the same effective viscosity as the bulk suspension. The permeate flux
was assumed to be constant in the axial direction,

The model was subsequently extended by Davis and Birdsell (1987), relaxing some of the
assumption made by Leonard and Vassilieff. Fully developed parabolic velocity profiles were
determined for both the suspension and the particle layer,h permeate fluxes were allowed to
vary axially, and the pa::ticle layer was assigned a concentration-dependant viscosity greater
than that of the bulk suspension.

3 It will be shown in Section 5.2.1 that the one-dimensional Fickian Diffusion equation is only applicable if the
boundary layer thickness is small in comparison to the radius of the tube.
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To test model predictions and to visually monitor the convection phenomenon a CFMF channel
with transparent side walls was constructed. At high fluxes it was observed that thick stagnant
cake layers were formed. At lower fluxes thin layers formed within which it was observed
that particles did indeed flow axially. Theoretica! predictions for the thickness of these flowing
layers were in order of magnitude agreement with observations, except at high thicknesses.

The observation that axially flowing particle layers do exist could superficially be viewed as
proof of the mechanistic superiority of the convection model over other laminar CFMF models
(e.g. lateral migration, shear enhanced diffusion). There are, however, a few points which
militate against this conclusion. Firstly in Davis and Birdsells’ experiments the resistance of
the particle layer was negligible compared to the membrane resistance, and thus not typical of
most CFMF systems. Secondly, for those data points where the theory approximates observations,
the thickness of the flowing layers ranged from 180 um to 500 um. Noting that the particles
used had a size range of 150 to 212 pm, the flowing layers would have only consisted of one
to three particles, hardly typical of CFMF. Lastly, there are indications that if particles flow
axially along the tube in preference to forming a cake, this may merely be an effect associated
with particle size. In the present study an attempt was made to filter a suspension consisting
of spherical polystyrene beads of size range 100 pm to 400 ym. It was found that the particles
did not form a cake but merely travelled along the tube, eventually blocking up the reject line,
In contrast when limestone (d, = Spm) was used at the same operating conditions, a cake
formed readily. These are thus strong indications that Davis and Birdsells’ observation of

flowing particle layers may only be limited to a narrow range of axial flow, flux and particle
size, _ .-



3-20

In an improvement over the simple convection flow model, Davis and Leighton (1987) introduced
the convection-diffusion model. A particle layer concentrated at or near its maximum packing
density will not flow easily. Davis and Leighton proposed that within the particle layer the
mechanism of shear induced hydrodynamic diffusion will result in a fluidisation and resuspension
of the layer, which will then flow axially. The significant transport mechanisms in this model
are depicted in Figure 3.9. A "local" model was developed, enabling the prediction of the
particle . layer thickness, velocity and concentration profiles with the layer and the wall
concentration at any point along the tube, for an assumed permeate flux. The improved viscosity
and shear induced diffusivity correlations developed by Leighton and Acrivos (1986) were
employed. The "local" model also predicts the conditions at which a stagnant cake layer will
form below the flowing layer.

The "local' model was subsequently incorporated into a "global" model by Romero and
Davis (1988). The global mode! enables the prediction of the thickness of the flowing layer,
thickness of stagnant cake layer (if any) and permeate flux with axial distance. No direct
comparison with experimental observations has been made for either the local or global models,
although it is claimed that the model is in qualitative agreement with experimental trends.
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FIGURE 3.9 Axial Convection with Shear-Induced Back Diffusion
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3.2.4 Scour/Erosion_Models

In this class of models, correlations and models developed for the fields of sedimentation and
slurry transport in pipelines are adapted to CFMF. It is instructive to firstly briefly review
those fields and their relevance to the problem at hand.

Sedimentation includes the processes of erosion, entrainment, transportation, deposition and
compaction of sediment. Of major interest to workers in the sedimentation field are the critical
conditions at which a bed of sediment at the bottom of a river or canal will erode. This is
probably analogous to the critical conditions at which deposition will cease in a CFMF system.
The general approach adopted in sedimentation has been to define a critical shear stress at
which sediment motion is incipient. Notable amongst these is the work of Shields - the classical
Shields curve for incipient sediment motion [Raudkivi (1967)). A review of these efforts is
presented by Simons and Senturk (1976) and Raudkivi (1967). A large body of work has also
been performed on the turbulent dispersion of suspended sediment, analogous to the turbulent
radial mixing in CFMF systems. Good reviews of these dispersion models are presented by
Raudkivi (1967) and Yalin (1972).

The differences between CFMF and sedimentation are, however, significant. Sedimentation
correlations and models have been developed for length scales orders of magnitude greater than
that in CFMF. The driving force for deposition differs in each instance. Further, very little
hydrodynamic similarity exists between the system, These aspects preclude the direct application,
or easy adaptation, of sedimentation technology to CFMF.

Closer to the field of CFMF in terms of length scales is the field of slurry transportation in
pipelines. A vast body of work has been performed on the critical threshold velocity required
to maintain a bedload-free flow of suspension. This has resulted in a proliferation of
semi-empirical correlations which, in general, show very little correspondence to each other
[Turian et al. (1987)].

A good review and evaluation of the better critical velocity correlations is presented by
Turian et al. (1987) and Wasp et al. (1977). Recently, there has been a trend towards models
with a strong mechanistic and theoretical basis, especially for models to predict the velocity
and concentration profiles in a pipe. Significant amongst these are the works of Roco and
Shook (1985) and Hsu et al. (1989). In general, slurry transport models and correlations have
been developed for bulk concentrations substantially higher than that in CFMF systems,
concentrations at which particle-particle interactions and slurry velocity may exert a significant
influence on system beh}aviour.
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An example of a mode! developed from sedimentation technology is the Scour Model of
Fane et al. (1982). They proposed that at the steady-state the rate of convective transport
towards the cake is balanced by the rate of scour away from it :

* aﬁss ]
v, C, = - c. (3.28)

ol

where (96,,/91) = rate of scour
Cy
o

bulk concentration (mg/£)
wall concentration (mg/¢)

it

Following Raudkivi :

36, |
) = -K 3.29
( Y ) Y ( )

where K, erosion coefficient
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Assuming a power law relationship between K, and C,:
.k
K, = (c) " (3.30)
where k,, = a constant

From equations 3.28 to 3.30, and noting that C. is a constant for a given suspension,

K 7 ks
AR CA
Ce
« k7 — ks
= ki (Cy) (Ue) (3.31)

where k,s.k . k)7 are regression constants.

The utility of the scour model is limited to the correlation of experimental results and does not
elucidate the mechanistic particle transport processes. As a correlation method it proves useful,
showing a good agreement between observed and predicted fiuxes for a wide range of systems
[Fane et al. (1982)]. Since the main objective here is to develop a mechanistic model, the scour
model will not be pursued further. It should also be noted that equation 3.31 predicts a log-log
relationship between flux and bulk concentration, in contrast to the semi-log relationship
observed in the present study (see Figure 2.15).
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An example of a model developed from slurry transport technology is that of Scarlett and
Treasure (1974), reported in Murkes and Carlsson (1988). The model is an adaptation of
Durand’s correlation for the critical velocity :

cl3 o 1/2 '
Ugyyw = 243 Z13; [4gk(—*‘—1ﬂ (3.32)
CD pl
where U., = critical deposition velocity (m/s)
c = bulk concentration (volume fraction)
Cp = drag coefficient for spheres
p. .p: = densities of solids and liquid (kg/m3)
g = gravity (m/s2)
R = pipe radius (m)

Scarlett and Treasure proposed that the gravity, g, in equation 3.30 could be replaces by an
equivalent gravity, g, derived from fluidisation theory :
AP

c = 3.33
9 T U-m)p.-p0t. (3.39)

where AP = pressure drop across cake (Pa)
B = cake voidage
t, = cake thickness (m)

The hydraulic resistance equation is given by :

AP
V w = k 18 A E——— (3 .34)
H ( Lo+ t:) '
where k,s = permeability constaht
t., = equivalent resistance of filter medium (m)
V., = permeate velocity (m/s)

Combining equations 3.32 to 3.34 and rearranging yields :

-1
kg AP hZ AP .
V, = ——— —3 —3.5 . —4 1/2 <0
H . (h'3 Ucrit + h'4 Ucn‘t + Ov 28 Ucrit)

(3.35)

where

h, = 2,43 c‘”(-—fji—~)”2
2 ' (1-Bp,
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1/2
e (8)
21

Evaluation of the mechanistic basis of the model is difficult. The Durand correlation is highly
empirical. Further, the rationale for the combination of equations 3.32 to 3.34 is not blatantly
obvious and neither is the equivalent gravity concept represented by equation 3.33. Murkes
and Carlsson, however, assert that the above model is "... the only complete theoretical approach
known...".

3.3 MODELLING APPROACH

From the literature review in Section 3.2 it is clear that proposed mechanisms for cake growth
and limit vary widely. The two models proposed specifically for turbulent flow, viz. the critical
drag force model and the turbulent back diffusion model, are based on completely different
controlling mechanisms, yet each provides a reasonable fit, in terms of trends and values, to
its particular experimental data set. It must be noted that in each instance there is an a priori
assumption for the mechanism responsible for limiting cake growth.

Clearly, there must be some 'common thread’ in turbulent CFMF systems. The processes
responsible for the convection of the solids to the cake, the growth of the cake and transport
away from the cake must be similar in all systems. The controlling process could, however,
differ from system to system, and could be a function of the operating regime, suspension
physical properties, cake properties etc. The logical point of departure in modelling the system,
therefore, would be to firstly develop a complete overview of particle transport processes in
turbulent CFMF systems, detailing the likely mechanisms by which particles may be exchanged
between the cake and the bulk suspension. Then system behaviour under the action of different
controlling mechanisms may be assessed and compared to experimental observations.

It was previously noted that for particles of size ranges typical in CFMF, inherent or Brownian
movement is negligible. Any particle motion which does occur is due solely to the fluid motion
and fluid-particle interactions (neglecting gravity effects). The point of departure in resolving
the particle transport processes in the system, therefore, is to examine the fluid dynamics and
fluid-particle interactions in the system.

In Section 3.4, the fluid dynamics of turbulent flow in a porous tube is examined and radial
flow regimes identified. In Section 3.5 fiuid-particle interaction and particle dynamics in these
various flow regimes are investigated. These are then combined in Section 3.6 and Section 3.7
to yield a description of particle transport processes in a CFMF tube and hence a qualitative
model of the mechanisms responsible for cake growth and its eventual limit.
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34 FLUID DYNAMICS OF TURBULENT FLOW IN A POROUS TUBE

The objective here is to identify fluid flow regimes and transport mechanisms that are likely
to exist in turbulent CFMF systems. Most studies on the fluid dynamics of turbulent flows
have been limited to pure fluids in non-porous tubes. Relevant concepts from these studies
will be outlined, and the effects that flow through the wall and the presence of particles are
likely to_have on the fluid dynamics will be investigated.

Unless otherwise stated, the contents of Sections 3.4.1 and 3.4.2 may be referenced in
Brodkey (1967), Hinze (1975) or Schlicting (1968). -

3.4.1 General Description of Turbulence

The major feature of turbulent flows is the spontaneous, chaotic, random motion of lumps of
fluid, called turbulent eddies or balls of turbulence, superimposed on the bulk flow. This
manifests as a fluctuation +n fluid properties (velocity, pressure etc.) superimposed on the
time-averaged mean values. The presence of these velocity fluctuations contribute a mean
x-directional momentum fiux of pU/“V*, where U "and V" are the instantaneous fluctuating
components of the velocity in the x and y directions respectively, at the point being considered
(x refers to the direction of the bulk flow, and y refers to the direction normal to the bulk
flow). In analogy to the microscopic exchange of momentum in viscous flows, this macroscopic
exchange of momentum by turbulent eddies may be regarded as a turbulent shear stress -

T, =-pU V" (3.36)
where T, = turbulent shear stress (Pa)

U°V’ = time averaged value of UV’ (m2/s?)

P = fluid density (kg/m3)

The effects of this macroscopic momentum transfer by eddies is most significant in the direction
normal to the bulk flow, resulting in velocity profiles that are substantially flatter over most
of the flow field than velocity profiles in viscous flows.

Two phenomenological theories of turbulent transport that are of interest are Boussinesq’s eddy
viscosity concept and Prandtl’s mixing length concept. Boussinesq proposed that parameters of
turbulent transport could be defined by analogy with the parameters of molecular transport.
In analogy to Newton’s viscosity relationship, he introduced the concept of eddy viscosity, i,
relating the turbulent shear stress to the mean velocity gradient :-

-~

: ol
T, = W,oT— (3.37)
oy
where O = time averaged axial velocity (m/s) e
n, = eddy viscosity (kg/ms)
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Subsequent refinements led to the introduction of the eddy diffusivity of momentum, € , defined
by :

Ko
E = o (3.38)
p
where ¢ = eddy diffusivity of momentum (m2/s)

(also called eddy kinematic viscosity)
Thus,

T, = p E-a—g- (3.39)
oy
Prandtl proposed the concept of mixing length, akin to the mean f ree path in molecular transport.
Packets of fluid would move through some distance in the longitudinal and transverse directions
while maintaining their x-momentum. Relative to the surrounding fluid, the packet will cover
a distance, !, proportional to its diameter, before it loses its integrity and mixes into the
surroundings. This mixing length, 1, is related to the turbulent shear stress by :-

oU | oU
T, o= el |5 (3.40)
oy 190y
The eddy diffusivity, is thus related to the mixing length by :-
e = 2|y (3.41)
oy

Neither ¢ nor ! may be predicted independent of experiment. However, these phenomenological
concepts are valuably utilised in the correlation of turbulent velocity profiles and subsequently
yield information on the turbulent transport in the system. In general, € and [ are calculated
from measured velocity profiles and known shear stress distributions, yielding the distributions
of € and ! across the flow field, and the effects of operating conditions on these distributions.
Phenomenologically the ! distribution indicates the eddy length scales and the e distributions
the momentum diffusivity in the flow field.

3.4.2 Turbulent Flows in Non-Porous Tubes

Prior to examining the fluid dynamics in tubes, it is necessary to clarify the concept
of wall. Fluid dynamics studies often refer to the wall, distance from the wall, and
the wall region. This wall refers to any solid surface that bounds the flow field. In
normal pipe flow, the boundary is the wall of the pipe itself. In CFMF systems,
however, the boundary to the flow field is the inner surface of the cake, and not the
tube wall. Hence, when reference is made to the wall in the rest of this fext, it is

important to note that this refers to the inner cake surface, if a CFMF system is being H
considered. If it becomes necessary to refer to the wall of a CFMF tube, this will

specifically be referred to as the tube wall. i
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Pipe flow is a specific instance of wall flows i.e. flows in which the turbulence is affected by
the presence of a solid boundary. The flow field may divided into three sub-regions (Figure 3.10).
At the solid boundary, the axial velocity is zero due to the no-slip boundary condition. Next
to the wall is a thin region, the viscous sublayer, where the velocity gradient is at its maximum
and where viscous effects dominate over inertial ("turbulence’) effects. Above this sublayer,
inertial effects progressively increase and are of the same order of magnitude as the viscous
effects. This constitutes the buffer or intermediate zone and is also the zone of maximum
turbulence intensity (U °/8) . Far from the wall the flow becomes fully turbulent with dominating
inertial effects and negligible direct viscous effects - the fully turbulent zone.

centreline

Turbulent C/ /D </ \D .
predominanily
Core turbulence
effects

turbulence
ond
viscous effects

predarninantly
viscous effects

Sublayer

FIGURE 3.10 Sub-Regions in a Turbulent Flow Field

Various researchers have measured the velocity profiles in, and thicknesses of, these zones.
This has resulted in wniversal velocity profile for wall flows (Figure 3.11), in which a
non-dimensional velocity, ¥~ , has been correlated with a non-dimensional distance from the
wall, ¥* , where :-

. U ,

Ut o= 3.40

U‘ ( )
Ut .
yr = Y (3.43)
Vv
with U = axial velocity (m/s) )
Y = distance from wall (m)



= kinematic viscosity (m2/s)
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v
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FIGURE 3.11 Universal Velocity Profile for Turbulent Flow
[from Welty et al. (1976)]

The profile may be represented by three equations :-

laminar sublayer (¥ <5) L
buffer zone (5<}’*$30) U’
fully turbulent zone (Y*>30) u*

y* (3.44)
S InY'-3,05 (3.45)
2,5 InY'+5,5 (3.46)

The universality of Figure 3.11 is seen in that it applies equally well to cartesian and cylindrical

geometries, and to gases and liquids [Nedderman (1961)].

-
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A dimensional version of the velocity profile is presented in Figure 3.12, calculated at typical
conditions used in this study. The viscous sublayer is typically one order of magnitude greater
than the diameter of the particles used in this study (d , = Spm). This indicates that the important
mechanism governing particle transport near the cake will occur in the sublayer and buffer
zones, warranting a more detailed investigation into those regions. This is pursued further a
few paragraphs henceforth.
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FIGURE 3.12 Dimensional Turbulent Velocity Profile

From the universal velocity profile, the radial distribution of € and { may be calculated using
equations 3.37 to 3.40, and the well known distribution of shear stress in pipes? ;-

r
wr) = T,— (3.47)
R
where <t(r) = shear stress at radius r
T, = Sshear stress at wall
R = tube radius (m)
4 It will be shown in Chapter 5 that calculation of the eddy diffusivity of momemtum from the universal velocity

profile is invalid. For the present purpose, where only trends are required, this is acceptable.
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The radial distribution of {for high Reynolds Numbers is depicted in Figure 3.13 The distribution
is relatively insensitive to Re, and is almost independent of Re for values above 105, The
mixing length, and hence phenomenological eddy size, progressively increases from the wall
and levels off towards the centreline. This is consistent with statistically correlated eddy sizes
which also indicated that eddies are largest in the centre of the tube and progressively decrease
in size towards the wall, eventually vanishing in the sublayer. Statistical studies on turbulence
structure have, however, also shown that eddies at any point in the flow field do not posses a
unique size but consist of a spectrum of sizes. For the purposes of this study, { may be assumed
to be the effective eddy size as defined by equation 3.40,
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Y]
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FIGURE 3.13  Radial Distribution of Prandtl’s Mixing Length
[from Schlicting (1968)]

The distribution of € in pipes is shown in Figure 3.14, The diffusivity of momentum is high
in the core, and progressively decreases towards the wall, eventually vanishing in the sublayer
where the molecular viscosity becomes predominant.

What emerges clearly f rom both the ¢ and e distributions is that the core of the tube is highly
turbulent with relatively large eddies, and both the eddy size and the effective diffusivity that
results from the eddies progressively decreases towards the wall, eventually diminishing in the
viscous sublayer.
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FIGURE 3.14 Radial Distribution of Eddy Diffusivity of Momentum

[from Schlicting (1968)]

Classically, the viscous sublayer has been regarding as a steady, laminar flow region
[Schlicting (1968)]. Various workers in the fields of heat and mass transfer in turbulent systems
have noted that the assumption that e =0 in the sublayer leads to the calculation of wall fluxes
that are too low when compared to experimental values [Notter and Sleicher (1971)]. This led
to the postulation that some eddy activity does exist in the sublayer and resulted in a proliferation
of studies on the likely form of the eddy diffusivity relationship in this region [e.g. Notter and
Sleicher (1971), Son and Hanratty (1967), Hughmark (1968, 1971, 1973)]. 1n general, the
proposed relationships have the form :-

S = function (¥") (3.48)

The expressions are all empirically evaluated, by fitting the equation to measured heat and mass
transfer rates,

Recently, detailed visual observations of the sublayer indicate clearly that the zone is not laminar
in the strictest sense, but that large scale, cyclic motions occur within the sublayer {Corino and
Brodkey (1969)]. The major feature of these motions is the sudden, violent ejection of lumps
of fluid from the sublayer into the buffer zone, in a direction almost normal to the wall. This
phenomenon has been termed a rurbulent burst, and consist of three phases (Figure 3.15).
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FIGURE 3.15 The Turbulent Burst Phenomenon

High-speed fluid from the outer region enters the sublayer - the inrush phase. The fluid then
travels for some distance parallel to the wall, progressively becoming more unstable - the sweep
phase. The fluid is then suddenly ejected out of the zone in the form of a discrete fluid lump
- the ejection phase. The ejection generally originates from the region S<y’ <15, although
ejections have been observed downtoy’ = 2,5, Below y* = 2, S the velocity gradient is essentially
linear at all times, but with a widely varying slope, indicating that although this region is not
active in the ejection phase it is nevertheless affected by the events occurring above it. The
outer penetration depth of the ejected fluid element is random and the fluid is eventually
accelerated and swept along with the axial flow. In terms of a 25 mm tube with water flowing
at 2 m/s, the statistical average axial distance between bursts will be 6,35 mm and the frequency
about 100 Hz [Yung et al. (1989)]. Although each burst may only cover a small fraction of the
sublayer, the high frequency of bursts will result in the entire sublayer being swept within a
short time,

Clearly the turbulent burst phenomena will result in transport rates from sublayer to buffer
and turbulent zones being substantially greater than that predicted by purely viscous transport
mechanisms. This is consistent with the view noted earlier, i.e. that the assumption of pure
viscous flow in the sublayer leads to the prediction of heat and mass flows that are too low.
Noting that the expressions for ¢ in the wall region are evaluated by comparison with measured
transport rates, it is most likely that the final correlations implicitly include the contribution
of turbulent bursts to transport in the system. This will be addressed further in Chapter 5.

Davies (1975) expressed the view that turbulent bursts were merely turbulent eddies that had
managed to penetrate the sublayer. The author of this thesis is clearly inadequately equipped
to decisively comment on this. There are some superficial aspects, however, which mitigate
against the equivalence of eddies and turbulent bursts, Firstly, Davies’ viewpoint has not been
reflected in the recent papers published by workers in that field, who all still refer to "turbulent
bursts” [Yung et al. (1989)]. Secondly it is difficult to conceptualise how an eddy, a discrete
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a lump of fluid, that penetrates the sublayer could result in the well defined three-stage activity
that has been observed in the wall region. It is feasible that the initial inrush of fluid could
be due to an eddy, but the subsequent sweep and ejection phases are not characteristic of eddy
behaviour. In that instance it could be stated that the burst is caused by an eddy, but is a
structurally different phenomenon. Finally, the burst activity has been observed to occur with
a statistical regularity, both in distance and time, that is not consistent with the occasionally
random penetration of the sublayer by an eddy. On the basis of these superficial comments,
eddies and bursts will be regarded as separate phenomena in the rest of this study. Bursts will
refer to inrush-sweep-ejection sequehces that occur in the near wall region, and eddies will
refer to large-scale random motions of lumps of fluid that occur in the buffer and turbulent
ZOnes.

3.4.3 Fluid Dynamics in Porous Tubes

The fluid dynamics of turbulent flow in porous tubes has not been studied as extensively as
that of non-porous tubes. The most significant experimental work in this regard is that of
Weissberg (1955, 1956). This section will be limited to the identification of the major differences
between turbulent flow in porous and non-porous tubes.

The obvious difference is that in porous tubes the flow has a radial component, IV, in addition
to the axial velocity component, &/ . This radial velocity progressively increases from the centre
of the tube towards the wall, but shows a decrease in the immediate vicinity of the wall
(Figure 3.16). The effect of this radial flow on the fluid dynamics is seen in the axial velocity
profile, turbulence levels, as well as the shear stress distribution.

1ot~ | [ V/ves =1 = Y/Rc
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Ves /U = 0,002 ' N
0 ; T T 7 T
0 Q.2 0.4 0.6 0.8 1.0
wall centreline
Y /R, N
FIGURE 3.16 Typical Radial Velocity Profile
[from Kinney and Sparrow (1970)]
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The typical effect of radial flow through the wall (suction) on the axial velocity profile is shown
in Figure 3.17. Over most of the cross section, the velocity gradient is fiattened by suction,
but is increased in the near wall region. Effectively, the shear rate at the wall increases, and
the boundary layer thickness decreases, as suction is increased. Attempts to determine a universal
velocity profile in the normal U~ vs ¥ form were unsuccessful, the data points not falling
along a common curve as in the case of non-porous tubes [Weissberg (1955)]. Weissberg did,
however, correlate his results in an empirical form. This will be addressed in Chapter 5.
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FIGURE 3.17 Effect of Radial Fluid Flow on Axial Velocity Profile
[following Weissberg (1956)]

Beavers and Joseph (1967) have shown that for flow in porous tubes the no-slip condition is
not met at the wall since fluid can move axially within the porous wall. As noted by Belfort
and Nagata (1985), however, for most common instances the deviation from the no-slip condition
is negligible,

Weissberg observed that for all suction rates, turbulence levels across the entire cross section
of the tube were lowered as suction increased. By implication, transport levels are likely to
decrease with increasing suction. In the near wall region, however, the decrease in velocity
fluctuations would to some degree be offset by the increased velocity gradient and the net
effect on transport coefficients is difficult to ascertain. Skin friction coefficients for turbulent
flow in porous tubes are greater than that in non-porous tubes, and increases as the suction
rate is increased. This is in direct contrast to viscous flow in porous tubes, where the skin
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friction coefficients are less than that in non-porous tubes and decreases as suction increases
[Yuan and Finkelstein (1956), Pillay et al. (1988a, 1988b)]. The effect of suction on the stability
or frequency of turbulent bursts is not known.

Effectively then the major effects of radial flow through the wall are a decrease in turbulence
levels across the tube, an increase in the skin friction coefficient and a thinning of the boundary
layer.

3.4.4 Effect of Particles on Fluid Dynamics -

The effect of particles on turbulence is dependent on particle concentration and size
[Brodkey (1967), Soo (1967)]. If the particles are very small compared to the scale of turbulence
("size of eddies") they act as tracers, following the fluid elements closely. In this instance the
presence of particles does not alter the turbulence structure substantially. As particle size
increases relative to the scale of turbulence, a fraction of the available energy in the system is
lost in dissipation to the particles, effectively dampening the turbulence. This dampening
increases as the particle concentration increases. Eventually a total dampening of turbulence
occurs as the maximum packing density of the particles is approached.

The turbulent burst phenomenon is also affected by the presence of particles. Grass (1974)
observed that, similarly to eddies, bursts are also dampened by the presence of particles.

3.4.5 Summary of Fiuid Dynamics

The major feature of turbulent flows is the presence of turbulent eddies which, inter alia,
promote good momentum transport in the direction normal to the bulk flow. This momentum
transport may be characterised by an eddy diffusivity of momentum, € . The length scale of
eddies, and €, is high in the centre of the tube, the turbulent core, and progressively decreases
towards the wall, eventually vanishing in the viscous zone next to the wall, the sublayer.
Although predominantly viscous, the sublayer is periodically destabilised by the outward ejection
of relatively discrete lumps of fluid, or turbulent bursts. These bursts enhance transport out
of the sublayer. Above the sublayer lies a region where both viscous and turbulence effects
are significant, the buffer.

In a porous tube, the fluid also has a radial velocity component which increases towards the
wall. In general this results in the axial velocity profiles, turbulence levels and shear stress
distributions in porous tubes differing from that in non-porous tubes, the extent of deviation
increasing as the radial flow increases. By implication, radial transport coefficients in porous
tubes would differ from that in non-porous tubes.

The presence of solid pa'r_ticles within the flow field tends to dampen the level of turbulence,
the dampening increasing with particle size and concentration,
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3.3 FLUID PARTICLE INTERACTIONS AND PARTICLE DYNAMICS

The objective here is to identify the likely particle transport mechanisms in the various flow
regions identified in Section 3.4,

3.5.1 Particle Motion in_a Turbulent Flow Field

Particle ‘motion in a turbulent flow field is determined by the particle size and inertia,
characterised by a particle relaxation time, and some characteristic scale of the turbulence
[Brodkey (1967), Ni (1986)]. 'If the particle is large in comparison to the scale of the turbulence
it will not respond to the fluctuating velocity components, and the main effect will be a
dampening of the level of turbulence. On the other extreme, if the particle is small compared
to the smallest eddies (i.e. microscale of turbulence) it will also act as a tracer particle and follow
the detailed motion of the fluid elements in the eddy. Particles within these extremes are likely
to have some mean velocity relative to the fluid and respond to some range of eddy sizes.

Particles which do respond to the fluctuating velocity components will also experience the
random, chaotic motion associated with eddies. Cleérly if a concentration gradient exists this
eddy transport of particles will result in a transport in the direction of decreasing concentration,
and may be characterised by an effective turbulent particle dif fusivity, Dp . Formally, D
accounts for the random motion of particles in a turbulent flow field, as induced by the
diffusivity of the fiuid {Soo (1967)). D, will be related to the diffusivity of momentum, €,
but will not necessarily be equal to it. A quantitative discussion of this relationship is postponed
to the chapter on Mathematical Modelling, Chapter 5.

3.5.2 Particle Motion in a_Viscous Flow Field

In considering viscous flow fields, it is convenient to consider separately particle motion that
occurs in arbitrary viscous flow fields, and particle motion that will specifically occur in the
viscous sublayer of turbulent fiow fields.

Two phenomena that apply to any viscous flow field have previously been discussed in
Section 3.2, viz. the inertial lift effect and the shear induced hydrodynamic diffusion. To
recap, the inertial 1ift theory proposes that particles in a viscous shear field will experience a
lift force directed away from the wall, and will migrate across streamlines to some equilibrium
position between wall and centreline. The shear induced hydrodynamic diffusion theory proposes
that particles in a viscous shear field will experience particle-particle interactions that will
result in a net diffusion in the direction of decreasing concentration. '

The issue of particle motion in the viscous sublayer of a turbulent flow has for many years
been of major interest to workers in the fields of fouling in exchangers, pipe transport of
suspensions and river hydrology. The objective was to determine the mechanisms by which
particles may travel across the sublayer to deposit on the wall and the mechanisms by which
they may be re-entrained from the wall back into the bulk flow.
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The question of how particles at a wall may be re-entrained back into the bulk flow is somewhat
more problematic than may be initially perceived. Simplistically, it may be presumed that
turbulent eddies could directly re-entrain particles from a wall. Mechanistically this is
inconsistent with the known fluid dynamics in the near wall region which clearly indicates that
eddies die out at some finite distance from the wall. Consequently, investigations into the
re-entrainment process have focussed on developing alternative mechanisms for the detachment
of particles from a surface and transportation of particles across the sublayer.

Most workers have tended to use a Saffman-type lift force to explain particles transport across
the sublayer [see e.g. Soo and Tung (1972)]. Observations on the unsteady nature of the sublayer
have resulted in mechanistically more attractive models, significantamong which are Sutherland’s
eddy entrainment model [Sutherland (1967)], and Cleaver and Yates’ updraft under a burst model
[Cleaver and Yates (1973)]. Although Sutherland’s model is based on the questionable concept
of re-entrainment by eddies, the model is reviewed here since the experimental observations
are of interest to the problem at hand.

Sutherland’s proposals were based on the observation of grain motion and sublayer structure in
a laboratory flume. At low axial fluid velocities (wéll below the critical condition for particle
entrainment criterion used in the field of hydrology) isolated grains which protruded above the
mean bed surface were observed to move axially along the surface. At slightly higher velocities,
grains moved in the form of short intermittent bursts. With each burst, many grains moved
simultaneously and then the motion subsided and the area remained relatively undisturbed until
the next burst. The frequency of these bursts increased with increasing velocity and, at the
critical condition, occurred about every two seconds at any specified point. At and above this
critical condition, grain motion occurred mainly in the axial direction, parallel to the bed
surface, with a few grains occasionally moving at a slight angle away from the bed. In further
experiments, the structure of the sublayer was observed using a dye injection technique. A
major feature was the sudden ejections of Jumps of fluid out of the sublayer. The more violent
ejections resulted in particles on the bed surface being set into motion, whereafter they moved
axially with the flowS.

Sutherland proposed that the unsteady nature of the sublayer could be explained in terms of
eddy penetration into that region. Particle entrainment will occur by eddies disrupting the
sublayer and impinging onto the surface layer of grains. The swirling motion within the eddy
will increase the local shear stress and cause some particles to roll along the surface. This
defines the incipience of motion. This swirling motion within eddies will also exert a drag
force on exposed particles, thereby accelerating them. The drag will consist of vertical as well
as axial components. If the vertical component is sufficiently large, the resultant force on
exposed particles will be inclined away from the bed resulting in these grains leaving the bed.
Since each eddy would cover a number of particles, motion away from the bed would occur
as bursts of particles. Evaluation of Sutherlands model is postponed to a few paragraphs hence.

-

5 It is not clear from the paper whether, at the incipience of motion, particles were suddenly lifted vertically or
whether they merely rolled over neighbouring particles into the flow field.
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Cleaver and Yates (1973) model is based on the turbulent burst phenomenon described in
Section 3.4.2. There, Corino and Brodkey’s observations on fluid flow in the near wall region
is described. Here, some of their observations on particle motion in that region will be outlined.

Their investigations into the structure of the viscous sublayer were based on the monitoring of
0,6 um tracer particles in the near wall zone [Corino and Brodkey (1969)]. As noted previously,
results indicated that violent ejections of the fluid occurred from the region S<y’ <100 and
occasionally occurred down to y*=2,5 . The fluid below y' = 2,5 remained passive with
respect to the bursts, However, particles below y*=2,5 exhibited some motion "in sympathy”
with the ejection. Particles were observed to move axially at a slight angle away from the wall,
this ejection angle generally being ~5°. Particles rarely escaped the region y* < 2,5 during the
period of single burst. Particles then either moved back to the wall, presumably convected
there by a new inrush phase, or reached the region y > 2,5 and were. entrained by the next
ejection phase.

On the basis of these observations, Cleaver and Yates proposed at the instance of an ejection,
the fluid flow around a single, isolated particle would be as in Figure 3.18.

Flow | C ) ~

ejection

Stagnation point

FIGURE 3.18 Lift Force Created by Updraft Under a Burst

The ejection would induce a quasi-steady updraft of fluid. Near the wall, the flow would
behave like a viscous stagnation point flow and would thus consist of both horizontal and
vertical velocity components. The particle would, under the action of this vertical force, be
lifted off the substrate and would subsequently describe a trajectory inclined “slightly to the
horizontal. '



It was noted that the theoretical lift force experienced by the particle was extremely small, and
orders of magnitude smaller than the axial drag force. However, this force was regarded as
being sufficient to detach the particle from the substrate and move it through a vertical distance
of one particle diameter during the period of the burst. Phillips (1980) has expressed the view
that Cleaver and Yates proposal of a lift force created by the updraft under a burst is the most
satisfactory model for re-entrainment in turbulent flows.

Yung et al. (1989), however, have recently questioned whether the lift force created by the
updraft would be sufficient to lift particles off the surface. In their experiments, the
burst-particle interactions in the sublayer were monitored using dye injection together with
high speed photography and a dual laser beam illumination technique. Their observations
indicated that the lift force experienced by a particle during a burst is not as strong as suggested
by Cleaver and Yates. Generally, particle motion occurred axially along the surface. The
motion was intermittent, particles remaining stationary for a short time before resuming motion.
Particles did not generally exhibit any upward motion when a fluid lump was ejected out of
the sublayer. In a few instances, particles did exhibit an instantaneous vertical velocity
component, but this was statistically rare. Their observations showed that at the incipience of
particle re-entrainment, the horizontal force is dominant in the entrainment mechanism, in
contrast to Yates hypothesis of an instantaneous lift force that would be sufficient to detach
particles from the surface. They concluded that "... the turbulent burst activity is insignificant
in the re-entrainment of deposited particles completely submerged within the viscous sublayer".
I

A further significant study on burst-particle interactions is that of Grass (1974). In his
experiments, the boundary layer was formed on a flat plate towed through still water, and the
re-entrainment process recorded using a high-speed photographic technique. His observations
indicated that the ejection events carried particles from the bed region through the entire
boundary layer in single, continuous motions. The detailed mechanisms by which this
re-entrainment occurred were not stated in the paper.

Clearly, diverse opinion exists on the role of turbulent bursts in particle re-entrainment. Prior
to attempting to resolve the role, if any, of bursts in particle re-entrainment, it is instructive
to contrast the experiments of Sutherland, and Corino and Brodkey. In both instances, the
observations of fluid behaviour in the sublayer were similar. Sutherland attributed this behaviour
to eddy penetration into the zone. Corino and Brodkey, in a more detailed examination,
identified a three-step turbulent burst event as the cause of the behaviour. It is significant
that Sutherlands proposal of eddy penetration was made solely to explain ‘how sublayer
destabilisation may occur, and further that his study was puinshed two years earlier than the
more detailed sublayer study of Corino and Brodkey. Tt thus likely that Sutherland’s observations
of the sublayer behaviour were in fact due to turbulent bursts, although he did-not recognise
it in terms of a three-phase event distinct from the phenomenon of eddies.
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The role of bursts in particle re-entrainment may now be addressed. Grass® observations
indicated that the ejection events do transport particles out of the wall region. Conversely,
Yung et al. observed that particle motion occurs mainly in the axial direction, and particles
rarely exhibited any vertical motion that could be correlated with the ejection events. This
predominantly axial motion was also observed by Sutherland. It is difficult to identify specific
differences in experimental conditions that may have led to these contradictory results. The
particle size used by Grass (150 pm) falls between the sizes used by Yung et al. (50 pm) and
Sutherland (268 to 512 ym). The bulk and friction velocities used in Grass® experiment (U=
0,7 m/s, U = 0,029 m/s) are, however, slightly higher than that used by Yung et al. {(U=10,1
to 0,5 m/s, "= 0,01 to 0,026 m/s), From the available experimental evidence, no unequivocal
conclusion may be drawn regarding the role of turbulent bursts in particle re-entrainment from
the sublayer.

An alternative approach to the problem would be to identify the various steps involved in the
re-entrainment of particles and to assess the possible role of turbulent bursts in these steps.
The re-entrainment process may be divided into two stages :-

(a) Step 1 - a particle must be detached from its stable position on the bed surface.
(b) Step 2 - the particle must be transported across the sublayer and into the buffer zone.

From the available experimental evidence, it seems that ejection events will be capable of
transporting particles that have reached the region y >2,S across the rest of the sublayer,
providing of course that the particles are not too large. The problem then resolves to assessing
whether bursts can detach particles from the bed surface and transport them across the region
y'<2,5.

Cleaver and Yates' proposal of a lift force created under an updraft that is capable of detaching
particles from a surface is highly idealistic. The experimental observations of Yung et al.
indicate clearly that this lift force, if it exists, does not manifest itself in terms of observed
particle motion. A second criticism of the model is that the lift force arises solely as a resuit
of the existence of the stagnation point. If a bed of particles is considered, it is seen that all
particles will be embedded below some mean bed surface (Figure 3.19) and the fluid flow
around each particle will differ from the simple picture presented in Figure 3.18. Rt is then
difficult to conceptualise how stagnation points, and subsequently lift forces, may arise. Clearly,
Cleaver and Yates lift force under an updraft cannot be the mechanism by which particles are
initially detached from a bed surface.



3-41

)

major force on

surface particles I fj
will be horizontal ejection

FIGURE 3.19 Expected Fluid Flow Patterns at Cake Surface

A possible mechanism for the detachment of particles from a bed surface is as follows, based
partially on Sutherland’s model. A particle on a bed surface will be held there by, inter alia,
its weight and various inter-particte forces. The axial fluid flow will exert an axial shear on
the particle which if in excess of some critical value will cause the particle to roll about its
point of contact with its neighbouring particles and thus off the bed surface. Thus, the initial
step in the re-entrainment process is caused by the axial shear on the particles.

This proposed mechanism for the initial step in particle re-entrainment is consistent with the
observation of Yung et al. (1989) that "... in the initial stage of particle re-entrainment, the
horizontal force is the dominant force acting on the particle”. Accepting this, it is seen that
the only pre-requisite for this initial detachment of the particle is that the shear stress at the
wall must exceed some critical value. Turbulent bursts may contribute to this by causing local
increases in the wall shear stress, but in principle this initial stage is not dependent on the
existence of bursts.

A particle that has been removed from the bed surface is then exposed to the predominantly
axial fluid flow in the region y" <2,5. Now although the fluid in this regions seems to be
passive with respect to the ejection event, the fluid will be accelerated by inrush and sweep
events and will subsequently decelerate when the ejection event occurs. This is confirmed by
the observation that the region y < 2.5 has an essentially linear velocity profile that varies
widely and randomly [Corino and Brodkey (1969)). Since the inrush event is directed towards
the wall and the ejection’event away from it, the fluid in this region will experience a periodic
velocity component inclined away from the wall. Effectively then a particle in the region
y*<2,5 will experience a fluctuating drag force which is predominantly axial but with 2
periodic component normal to the wall. If the particle is relatively large, it may not respond
to the normal component and will exhibit an intermittent axial motion. This is consistent with
the observations of Yung and Sutherland. Smaller particles may respond to the periodic normal
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drag and describe a trajectory inclined away from the wall. Such particles could then reach
theregion y' > 2.5 and be entrained by ejection events. Thus, turbulent bursts could, indirectly,
cause the transport of smaller particles across the region y’ <2,5, whereafter they may be
directly entrained across the rest of the sublayer.

It would seem then that the initial step in the re-entrainment of particles from a bed could
occur in the absence of bursts, but can be promoted by them. Larger particles which have
been removed from the bed surface will tend to move axially along the surface and are not
likely to be transported across the sublayer by bursts. Smaller particles may be transported
across the region y' < 2.5 by the indirect action of bursts and may subsequently be transported
across the rest of the sublayer by direct entrainment by bursts.

In terms of the above model, re-entrainment, either directly or indirectly, by bursts will increase
as particle size decreases and as the frequency and density of bursts increases. In typical CFMF
system, the particle size is substantially smaller, and the bulk and friction velocity somewhat
higher than that used in the studies of Yung, Grass and Sutherland. Since the frequency of
bursts scales with U*% and the density with " [Yung et al. (1989)] it is highly likely that
transport of particles across the sublayer by turbulent bursts could be a significant transport
mechanism in CFMF systems.

3.5.3 Summary of Particle Dynamics

Particles in the turbulent core and the buffer zone could also be entrained by eddies and will
thus experience a transport in the direction of decreasing concentration. This may be
characterised by an effective turbulent particle diffusivity, Dy , which will be a function of the
eddy diffusivity of momentum, €.

Various mechanisms exist by which particles may be transported out of the sublayer and into
the buffer zone. These include shear induced hydrodynamic diffusion, lateral migration, and
turbulent bursts.

There appears to be little clarity on the mechanism by which particles are initially detached
from a surface. On the basis of a simple model, consistent with detailed observations of particle
motion in the near-wall region, it is most likely that the initial detachment occurs when a
particle rolls over neighbouring particles and into the flow field, under the action of the axial
shear stress at the surface.
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3.6 MODEL DEVELOPMENT

In the Sections 3.4 and 3.5, the fluid dynamics in the tube and particle dynamics in the various
flow regimes were examined. Prior to combining these into an overview of particle transport
in the system, two "intuitively obvious" cake limiting mechanisms will be examined in greater
detail. Criticism of these simpler models could possibly provide some indications as to the

significant mechanisms that must be included in the final overview of particle transport in the
system,

The major effects of turbulence include high momentum transport rates in the direction normal
to fluid flow and hence high shear stresses and shear rates at the wall. Particles may also be
transported by turbulent eddies and will thus also experience a high rate of transport down
concentration gradients normal to the bulk flow. The two obvious cake growth limiting
mechanisms that may be deduced from this are as follows :-

(a) Critical shear/drag model - it may be assumed that the cake grows until the fluid shear
stress or drag at the cake surface reaches some critical value. Thereafter all particles
which reach the cake surface will be unstable and will be sheared off the surface. The
models of Rautenbach and Schock (1988) and Fischer and Raasch (1986) are examples of
this.

(b) Turbulent back diffusion model - it may be assumed that the convection of solids towards
the cake is offset by an eddy-induced turbulent back diffusion of particles from cake to
bulk suspension. The limiting cake thickness is achieved when the rate of back diffusion
equals the rate of convection to the cake. An example of this type of model is that of
Hunt et al. (1987b)

As noted in Section 3.2, the critical shear model explains the observation that smaller particles
are preferentially deposited as the operating velocity increases. Further, the observations made
in Section 2.5.3.2, when the feed was switched to water, seem to be consistent with the postulation
that removal of particles from the cake surface is controlled by the shear stress at the surface.
Predicted trends for the effect of velocity on steady-state flux and cake thickness are also
consistent with experimental observation,

The first criticism of the critical shear model is that it is not consistent with the flux-time
behaviour obtained in Section 2.5.2, Assume that for some superficial inlet velocity U,, , the
limiting cake thickness isf., . During the growth of the cake whent, <t., , all particles convected
to the wall will deposit stably i.e. the system should behave like a dead-end filter. Hence, the
cake thickness and flux profiles should follow the dead-end filtration profiles until ¢, is
reached. Thereafter, the cake thickness will remain constant, but the flux could decline due
to fines infiltration etc. ‘Now assume that the system is operated at a velocity U, such that
U,,<U,,. The limiting cake thickness in this instance will be t,, and will be greater that ¢, .
Once again, for t, <!, the system should follow the dead-end filtration flux and cake thickness
profiles. Hence, the flux profile obtained at 7,, should be the same as the profile obtained
at U, , up to the steady-state point for U,, . For all velocities therefore, the flux should follow
the same dead-end filtration profile until the particular steady-state cake thickness is reached.
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This expected behaviour is depicted in Figure 3.20. Curve ] represents the expected flux-time
curve for dead-ended filtration. Curves 2 to 6 represent the flux curves that will be obtained
at different velocities if indeed the system behaved as inherently predicted by the critical shear
model. Taking into account preferential deposition of sizes at different velocities curves 2 to
6 may deviate slightly from those depicted in Figure 3.20, but in principle the flux decline
profiles and steady-state points should all derive from a common dead-end curve if indeed the
critical shear model holds.
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FIGURE 3.20 Expected Flux Decline Curves if Critical Shear/Drag Model
Applies

This predicted behaviour has been observed in the CFMF of a Bingham plastic under
laminar-flow conditions [Fordham and Ladva (1990)]. This predicted behaviour is, however,
clearly different from the experimental flux-time responses obtained at different velocities in
this study (Figure 2.9, repeated here for convenience). In the case of the experimental curves,
each curve exhibits a different rate of decline almost from start-up and the flux-time curves
up to the steady-state points clearly do not derive from a common dead-end curve. It would
seem therefore that the fate of cake growth is a function of inlet velocity, and thus contradictory
to predictions of the critical shear model.
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The second flaw in the critical shear model concerns the trend predicted for the effect of
concentration on steady-state flux and cake thickness. The drag force on a particle at the cake
surface, or shear stress at the surface, will decrease as the concentration increases, indicating
correctly that the cake thickness will increase with increasing concentration. In the mathematical
formulation of the surface shear or drag, the effect of concentration manifests in the viscosity
term [see e.g. Rautenbach and Schock (1988)]. In general, the viscosity of a suspension is a
weak function of concentration at low concentration but increases substantially as concentration
is increased. This implies that steady-state flux and cake thickness should show a weak
dependence on concentration at low concentrations, but a strong dependence on concentration
at high concentrations, This is completely contradictory to the trends observed in this study,
where the flux is strongly dependent on concentration at low concentrations, but weakly so at
higher concentrations.

Finally, although not explicitly stated in the critical shear model, some other back transport
mechanism must be occurring simultaneously with the shearing mechanism at the cake surface.
After the critical shear or drag has been achieved at the cake surface, particles will still be
convected towards the cake by the radial fluid flow, although they will not deposit. A mass
balance over any control volume next to the cake surface indicates that unless some mechanism
exists to remove particles from the volume at the same rate at which they convect into it, then
the concentration in the control volume will increase continuously. Effectively th:an, the critical
shear model is only applicable if some other back transport mechanism exists, and occurs at a
rate equal to or greater than the rate of convection of solids towards the cake. ‘
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The turbulent back diffusion model, similarly to the critical shear model, predicts the correct
trend for the effect of velocity on steady-state flux and cake thickness. With regards to
concentration, any diffusion model (e.g. equation 3.14) predicts a linear relationship between
flux and log concentration. This is consistent with experimental observations made in this

study, indicating the superiority of the turbulent diffusion model with respect to concentration
effects.

In the diffusion model, the cake will not grow at the same rate as in a dead-end filter, since
deposition of particles onto the cake is offset by a simultaneous back diffusion of particles
from the cake. The rate of growth of cake is thus given as :- '

Net rate of deposition = (rale of convection to cake)
- (rate of back dif fusion)
Now,
rale of convection to cake = function(V ..C)
rale of back dif fusion = funcrion(ﬁc'.suspension properties)

Thus, the turbulent back diffusion model predicts that the rate of growth of cake should be a
function of U, and hence a function of U/, and t.. According to this model therefore the rate
of decline of flux would be a function of inlet velocity and should differ appreciably from a
dead-end curve. This is consistent with the experimental obtained flux-time responses
(Figure 2.9), once again indicating the superiority of the turbulent back diffusion model over
the critical shear model.

The turbulent back diffusion model alone, however, fails completely to explain the observation
that smaller particles are preferentially deposited as velocity increases, or that smaller particles
preferentially infiltrate the cake after its formation. Indeed, an opposite effect is predicted.
It was noted in Section 3.4.2 that a spectrum of eddy sizes would exist at any point in a turbulent
flow field. For each eddy size range there would be a maximum size of particle that may be
entrained by those eddies. Thus, larger particles will only be transported by the larger eddies
while smaller particles will be transported by a greater range of eddy sizes, leading to the
conclusion that smaller particles will exhibit a greater diffusivity than larger particles.
Effectively, smaller particles should experience a greater rate of transport away from the cake,
leading to a cake preferentially composed of larger particles. Clearly, a simple diffusion model
alone cannot explain the preferential deposition effect.

A diffusion model alone also fails to explain the apparent irreversibility of the cake. If the
only mechanisms of significance were the convection of solids towards the cake and a diffusion
away from the cake, then on switching the feed over to water the rate of back diffusion would
have greatly exceeded the rate of convection towards the cake, resulting in progressive removal
of the cake. Similarly, when the velocity is increased, or concentration decreased, during a
run the imbalance in rates of convection and back diffusion would cause the cake to decrease
to the appropriate value, and the system would not exhibit any dependence on operating path.
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A further flaw concerns the contradiction between the mechanistic basis of a simple turbulent
back diffusion model and the known fluid dynamics of the near-wall region. Turbulent
back-diffusion models generally assume that back transport occurs by eddies transporting solid
from the high concentration cake to the low concentration bulk suspension. As stated by
Hunt et al. (1987b) and Flemmer et al. (1982), "...random eddies penctrate the boundary layer
to scour the cake beneath”. In view of the known fluid dynamics in the near wall region, this
is clearly unlikely. It cannot be over emphasised that detailed studies of the near wall region
and of the re-entrainment process contradict the concept of direct re-entrainment by eddies.
Further, it should be noted that if any form of back diffusion occurs from the cake, the opposing
process of convection towards the cake and back diffusion away from it will result in a
concentration profile being established between cake and suspension, the concentration increasing
towards the cake. The concentration of the sublayer, and probably a part of the buffer zone,
will be substantially above bulk concentrétion, and will approéch the cake concentration in the
layer adjacent to the cake. In Section 3.4.5 it was noted that the presence of particles tends to
dampen out turbulence, the degree of dampening being a strong function of concentration.
Thus, the effect of a high concentration in the near-cake region would be to dampen out
turbulence, increase the thickness of the sublayer and further reduce the probability of direct
re-entrainment by turbulent eddies. Clearly, the mechanistic presentability of any turbulent
back-diffusion model will be greatly improved if known transport mechanisms in the near wall
region (e.g. turbulent bursts, shear induced diffusivity) were incorporated into the model.

It emerges that neither the simple critical shear nor the turbulent diffusion models stands up
to criticism in terms of experimental observations and known fluid and particle dynamics. Each
model does, however, have specific merits, The global flux-time behaviour up to the steady-state
point, as well as the effect of concentration on the steady-state flux, seem to be "rate controlled”
phenomena, consistent with a diffusion model. The preferential deposition effect and apparent
irreversibility of the cake are seemingly controlled by the shear at the cake surface, consistent
with the critical shear model.

In the following sections, the applicable elements of these simple models are combined with
the fluid and particle dynamics developed earlier, yielding an overview of plausible transport
mechanisms in the system and hence the qualitative model for cake growth and limit.

3.7 PARTICLE TRANSPORT MECHANISMS

In this section, an overview of particle transport in a turbulent CFMF is developed, with
particular emphasis being placed on identifying the mechanisms by which particles may be
exchanged between the cake and the bulk suspension. This is then applied to determine the
concentration distribution in the system and the mechanism by which cake growth occurs.

Firstly, the concept of cake must be clarified. In all filtration systems, solids_accumulate at
the filtration barrier and form a densely packed structure. If the particles are of uniform size
and do not exhibit any form of back-diffusion, a distinct interface will exist between the dense
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structure at the wall and the bulk suspension. The concentration profile will exhibit a step
change at this interface (Figure 3.21 a) and it could be assumed that this interface delineates
cake from suspension.

If, however, some form of back-diffusion does exist, the opposing processes of convection to
the cake and back-diffusion away from it will result in the establishment of a smooth, continuous
concentration profile from bulk to cake. Further, if the solids form a compressible cake the
concentration will increase marginally through the cake itself (Figure 3.21 b). In this instance
the distinction between cake and suspension is not as clear.

[(a) No back—diffusion| [(b) Back—diffusion occurs
o] o o o © (o] O
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o o]
o o
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o
A A
[ ! I ©buk cake LTl bulk coke
permeate Concentration permeate Concentration
FIGURE 3.21 Expected Concentration Profiles in Systems With and Without

Back Diffusion

The difference between cake and suspension may be determined by considering how the mobility
or fluidity of a flowing suspension changes as its concentration is increased. With increasing
concentration, the mean distance between particles decreases, particle-particle interactions
increase and the viscosity of the suspension increases. Each particle is however, still suspended
in the flowing fluid. Further increases in concentration will result in further decreases in the
mean inter-particle distance until at some critical condition particles will be fully bounded by
other particles i.e. the particles will have reached their maximum random packing density.
Now, in contrast to being suspended in a flowing fluid, the particles form a coherent, stable
structure which is permeated by the flowing fluid. This structure can be regarded as cake.

Formally then, cake may be defined as particles at a concentration corresponding to the maximum
random packing density for the specified size distribution and particle shape. In the case of
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compressible cakes, the packing density will be a function of the solids compressive pressure
(see Section 4.2). In this instance the minimum concentration that can be regarded as cake will
be that concentration corresponding to the random packing density at zero consolidation pressure.

In terms of this definition, point A in Figure 3.21b delineates cake from suspension. The
region above point A consists of suspension and is mobile. The region below point A consists
of cake, at varying consolidation pressures, and is stagnant.

Cake growth and limit may thus be viewed in terms of concentration, Mobile suspension will
consolidate into stagnant cake if its concentration reaches some critical value, C,.., 8. Cake
growth occurs if accumulation of solids in the layer next to the existing cake leads to this layer
reaching this critical concentration. The layer of suspension immediately next to the cake, and
hence that which could potentially turn into cake, is referred to frequently in the discussion
that follows and will hereafter be referred to as the precake layer. Cake growth will cease
when, by mechanisms to be determined, the concentration of the precake layer is prevented
from reaching C,, .

The particle transport mechanisms in the system may now be addressed. The discussion
that follows concerns a differential tube i.e. it is assumed that axial gradients are negligible
in comparison to radial gradients and hence only transport processes occurring in the
radial direction will be considered 7.

The tube is regarded as consisting of 3 zones - the cake, the precake layer and the suspension
zone (Figure 3.22).

The cake consists of solids at their maximum packing density. It will be assumed that the
particles are mono-disperse, spherical and do not form a compressible cake, so that radial
variations in packing density through the cake will not exist. Further, it will be assumed that
axial flow in the cake is negligible, so that fluid flow within the cake occurs only in the radial
direction. The precake is a hypothetical layer above the cake and consists of suspension flowing
axially over the cake. This layer is in fact a control volume that lies within the viscous sublayer.
It has been assigned a special significance since it is this region that will be involved in any
cake growth. Fluid flow within the precake layer occurs in both the radial and axial directions.
The suspension zone consists of the rest of the viscous sublayer, the buffer zone and the turbulent
core. Fluid flow in this zone also occurs in both the axial and radial directions. '

6 Although the cake is at the maximum random packing density, €.... could be slightly below this packing density.
This is discussed further in Chapter 5.
7 The circumstances under which the above assumptions apply will be addressed in Chapter 5.
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Two inter-zonal particle exchange processes may be defined - exchange between cake and
precake, and exchange between precake and suspension zone.

{a) Cake - precake exchange processes

Firstly, the distinction between cake particle and precake particle must be drawn.
Considering the cake - precake boundary, particles may at any time occupy one of three
positions (Figure 3.23).
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fluid
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surface

FIGURE 3.23 Differences Between Cake and Precake Particles
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The particle may unequivocally lie within the precake (particle @), the particle may touch
a point on the cake surface (particle b), or the particle may occupy a hole in the cake
surface (particle ¢). Holes refer to the three-dimensional spaces in the undulating surface
of the cake into which particles may deposit. It is clear that particles 2 and b will possess
an axial velocity component while particle ¢ will not. In terms of a stability criterion,
particles @ and b are unstable, while particle ¢ is potentially stable. In this discussion,
particle ¢ will be regarded as a cake particle and both the particles @ and b will be regarded
as precake particles. Thus, cake particles are only those that unequivocally occupy
potentially stable positions in the cake surface.

Particles in the precake are subject to both radial and axial fluid drag forces. They will
thus move axially in the tube, describing a trajectory towards the cake surface. On
" reaching the cake surface, the particle may immediately occupy a hole or be convected
axially along the surface to eventually fall into a hole. Thus the radial fluid flow is the
driving force for precake particles to become cake particles.

A particle in the cake surface is subjected to radial fluid drag and interparticle forces
{particle friction) that tends to hold it stably in the surface, and an axial shear stress that
tends to destabilise it (Figure 3.24). The axial shear experienced by a particle in the cake
surface will be significantly greater than the axial drag experienced by a particle in the
precake, since in the former instance the relative velocity between particle and the axially
flowing fluid is at a maximum.

oxial fluid flgw

radial
fluid
flow

F. = axial force due to
oxial shear stress at
cake surface

F = radial force dus to
permeate drag and
interparticie forces

N

point of
contact
with

neighbauring
particle

FR = resultant force
on porticle

FIGURE 3.24 Forces Acting on Cake Surface Particle
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If the resultant of these forces falls below the point of contact with neighbouring particles,
then the particle will remain stable (Figure 3.25a). If, however, the resultant is directed
above the point of contact with neighbouring particles, the particle is inherently unstable
(Figure 3.25b). Thus, the radial fluid drag and the inter-particle forces define some
critical shear stress, T, , which must be exceeded in order to destabilise the particle,
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contoct
with

neighbouring
parlicle

porticle
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FIGURE 3.25 Stable and Unstable Cake Surface Particles

If the available fluid shear stress at the surface is below © ... , particles will remain stably
in the cake surface. If however, . is exceeded, the particle will roll out of its hole
and become a precake particle. The particle could, once again, be convected back to the
cake.

It is seen that if the available shear stress is below T, , a net transfer of particles from
the precake to the cake will occur, driven by the radial fluid flow. If T, is exceeded,
no net movement from precake to cake will occur, since all particles which are convected
to the cake, as well as existing particles in the cake surface, will be inherently unstable
and could be sheared off back into the precake. In this instance there will be a continuous
exchange of partncles between the flowing precake and the stagnant cake, w1th no net
deposition occurring onto the cake (Figure 3.26).

=
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(b)

Precake - suspension zone exchange processes

Particles are convected into the precake from the suspension zone by the radial fluid
flow. It is convenient to divide particle transport from the precake to the suspension
zone into two stages - transport from the precake across the sublayer and into-the buffg,r
zone, and transport from the buffer zone into the turbulent core (Figure 3.27).

The most significant mechanism of transport from buffer to turbulent core is by turbulent
eddies i.e. turbulent diffusion of particles. Two mechanisms are likely to be significant
in transporting particles from the precake across the sublayer and into the buffer zone -
transport by turbulent bursts, for particles above y' = 2,5, and shear induced
hydrodynamic diffusion, which could apply over the whole precake and sublayer zones.
The question of which mechanism will dominate will be addressed in the chapter on
Mathematical Mo"delling (Chapter 5). Lateral migration has not been included as a feasible
mechanism for trénsport out of the precake. The reason for this will be addressed in
Section 3.9.
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It is important to note that the back-transport mechanisms mentioned above i.e. transport
by turbulent eddies and bursts and shear induced hydrodynamics diffusion, are diffusive
processes and will only result in an effective particle transport from the precake to the
turbulent core if the concentration of the precake is greater than the bulk concentration.

Effectively then, if the concentration of the precake is the same as the suspension zone,
the only significant particle exchange process will be the convection of solids into the
precake by the radial fluid flow. If, however, the concentration of the precake is greater
than that in the turbulent core, a back-diffusion of solids from precake to turbulent core
will occur simultaneously with the convection of solids into the precake.

The effects of the above particle exchange mechanisms on concentration distribution in the
system may now be examined.

If the available shear stress at the cake surface does not exceed T, , all particles which convect

to the wall will deposit stably on the cake surface. The concentration of the whole free channel
(i.e. precake + suspension zone) will be uniform and will show a step- increase at the cake
surface (see Figure 3.21a). Since no concentration gradient exists between the precake and the
turbulent core, no back-diffusion can occur. The system will then behave like a dead- end
filter and the cake will grow at a rate defined by the permeate flux and the bulk concentration.
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If, however, T... is exceeded by the available fluid shear stress at the surface no net transport

from precake to cake will occur. A mass balance over the precake now indicates that the
concentration of the layer will increase and exceed the bulk cohcentration, as particles are
convected into the precake from the suspension zone. The back transport mechanisms now
become operative and a back-diffusion of particles will occur from the precake to the turbulent
core, via the viscous sublayer and buffer zone. The opposing processes of convection and back
diffusion will result in the establishment of a concentration profile, the concentration being a
maximum in the precake and progressively decreasing away from it to eventually reach bulk
concentration at the edge of some boundary layer (see Figure 3.21b). ‘

If the rate of convection of solids into the precake is greater than the rate of back diffusion
out of it, the concentration of the precake will obviously increase, and vice versa. If the
concentration of the precake increases, however, this will also cause the rate of back-diffusion
to increase, due to the increased concentration difference between precake and bulk suspension.
Thus, increases in the precake concentration will result in simultaneous increases in the rate of
back-transport until at some concentration the rate of back-diffusion will equal the rate of
convection into the precake. Now, no net transport into, or out of, the precake will occur and
the system will be in a dynamic equilibrium. The precake thus has a theoretical equilibrium
concentration, C,,, which will be attained when the rates of convection and back-diffusion
equalise.

For a differential tube, this theoretical equilibrium concentration may be evaluated from a
one-dimensional Fickian Diffusion equation. The circumstances under which the
one-dimensional equation is applicable, and the assumptions inherent in its application, will be
addressed in Chapter 5. At any radius, r, within the boundary layer,

rate of convection into precake = V(r) C (3.49)
. . oC
rate of back—dif fusion from precake = D, (r) > (3.50)
where V(r) = radial velocity at radius r (m/s)
D,(r) = particle diffusivity at radius r (m2/s)
c = concentration at radius r (volume fraction)

Equating equations 3.49 and 3.50, and integrating over the boundary layer, 6 , with boundary
conditions :-

at precake : ‘ r = R ‘C = C

. c eq
at edge of boundary layer : r = R.,-& c = C,
yields )

vy L (C) |
fkc-b D.(1) dr = 1In E—-B— (3.51)
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where R, = radius of free channel, or core (m)
(=k-1t)
) = boundary layer thickness (m)
C., = theoretical equilibrium concentration of precake (volume fraction)
C, = bulk concentration (volume fraction)

It is seen that this theoretical equilibrium precake concentration, C,.,, is determined by the

V(ry/D,(r) distribution. As V(r) increases relative to D,(r), C., Will increase, and
conversely.

There is however a physical limitation to the concentration of the precake. As noted in the
beginning of Section 3.7, at some critical concentration, €. , a suspension will reach its
maximum packing density and consolidate into cake. If C,, is less than C , the equilibrium
may be achieved. If however, at the specified V(r) and D,(r) distribution, C., is greater
than C,,. , the equilibrium cannot be achieved. In this instance, the concentration of the precake
will increase up to C.., , whereafter the precake will consolidate into cake. Effectively then
cake growth occurs when the concentration of the precake, as determined by the radial fluid
flow and particle diffusivity distributions, reaches the critical concentration for consolidation.

In summary, the initial step in the back-transport of particles from the cake is the shearing of
particles off the cake surface. If this initial step does not occur, the system will behave like
a dead-ended filtration system. If the shearing of particles off the cake surface does occur,
the systems behaviour becomes controlled by a convection-diffusion process. The radial fluid
velocity and particle diffusivity distributions will determine the concentration of the precake,
and hence whether the precake will reach the critical concentration and consolidate into cake.
Cake growth ceases when the equilibrium concentration of the precake falls below the critical
concentration for consolidation,

38 ~ QUALITATIVE MODEL FOR THE GROWTH AND LIMIT OF THE CAKE

It is proposed that the available shear stress at the cake surface always exceeds the critical shear
stress necessary to destabilise cake surface particles, except possibly for a short period
immediately after start-up.

On start-up, the radial fluid flow convects particles to the tube wall where, faced with a barrier
to their motion, they accumulate to form a cake. Particles are sheared off this cake surface
and the concentration of the layer immediately adjacent to the cake {precake) subsequently
increases and exceeds bulk concentration. Back-diffusion of particles occurs from this precake
to the turbulent core and a concentration profile is established. This back-diffusion is effected
by three mechanisms. Shear induced hydrodynamic diffusion and turbulent bursts transport
particles from the precake across the rest of the sublayer and into the buffer zone. Subsequently,
turbulent eddies transport particles from the buffer zone into the turbulent core.
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Initially the radial fluid flow, V(r), is high and the theoretical equilibrium concentration of
the precake, C,,, exceeds the critical concentration at which suspension will consolidate into
cake, C.,,. Thus the concentration of the flowing precake increases rapidly up to C. , at
which this flowing layer consolidates and becomes part of the stagnant cake structure. Now
particles are sheared off this “new” cake surface and a new precake layer develops. Thus cake

growth occurs by progressive precake layers reaching the critical concentration and consolidating
into cake.

The increase in cake thickness has 2 significant ef fects on the system :-

(i) the hydraulic resistance to permeate flow increases. Thus V(r) and the rate of
convection towards the wall decreases.

(i) the free channel area decreases, causing an increase in the suspension velocity in the
channel. All the back-transport mechanisms are strong functions of velocity, and hence
D ,(r) and the rate of back-transport of particles increases.

Effectively, as the cake grows the theoretical equilibrfum concentration of the precake decreases,
and further, the time taken for the precake to reach C.. progressively increases. At some
cake thicknesses, V' (r) will have decreased, and D,(r) increased, to a level where C,, falls
below C_... The rates of convection and back-diffusion may now reach equilibrium, the
precake will remain at a sub-critical equilibrium concentration, and no further cake growth
will occur.

Formally, the critical condition at which the limiting, or steady-state, cake thickness is attained
is given by :-

C S Ccrit

eq

where C,, is the theoretical equilibrium concentration of the precake, defined by the equilibrium

mass balance ;-

Foo V() _ (Ceq)
ch-s D.(1) dr = In -C—;
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39 DISCUSSION

Stated simply, the model proposes that back transport of particles occurs in two stages - shearing
of particles off the cake surface and subsequent back-diffusion to the turbulent core. If the
shearing step does occur, system behaviour becomes determined by the convection and
back-diffusion processes i.e. it becomes rate-controlled. '

Mathematically, the proposed model for the steady-state condition resolves to the same
convection-diffusion mass balance equation employed in the simple diffusion models discussed
in Section 3.2.2, with the entire proposed mechanism for cake growth and limit manifesting
solely as a boundary condition to the equation. Mechanistically however the proposed model
is more attractive than the simple turbulent diffusion mode!, being based on realistic particle
dynamics in the -near-wall region. These particle dynamics will manifest in the specific
formulation of the particle diffusivity, D, .

In Chapter 4 it will be shown that the model is consistent with the phenomena associated with
shear stresses at the cake surface i.e. the apparent irre_versibility of the cake and the preferential
deposition of smaller particles as velocity increases. Further, since the steady-state condition
is determined by the convection-diffusion processes, the predicted trends for the effects of
velocity and concentration on flux will be consistent with experimental observations. This is
illustrated in the chapter on Mathematical Modelling, Chapter 5. In order for model trends
for the effect of pressure on flux to be consistent with observations, however, the compressibility
of the cake must be taken into account. This is also addressed further in Chapter 5.

In Section 3.7, it was stated that lateral migration was not regarded as a viable mechanism for
the back-transport of particles from the precake to the suspension zone. The motivation for
this is that the concentration of the precake will be substantial, and will approach the cake
concentration. In these circumstances, the basic assumptions of the lateral migration model ie.
dilute suspension of non-interacting particles, are invalid.
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Chapter 4

INVESTIGATIONS INTO CHANGES
IN CAKE STRUCTURE
AND CHARACTERISTICS

4.1 INTRODUCTION

The limiting cake thickness, and hence steady-state flux, is primarily determined by the
hydrodynamics in the tube i.e. fluid-induced shears and particle transport. Hence, the observed
effects of operating variables on the steady-state flux are explicable in terms of system
hydrodynamics. However, various system behaviours observed in the experimental study are
seemingly determined by the behaviour of the cake e.g. the observed path dependence of
flux-time behaviour, the long-term decline in flux. In this chapter an attempt is made to
explain these observations in terms of the cake structure and characteristics.

In Chapter 3, only spherical, uniformly sized particles were considered. In most real suspensions,
including the limestone system studied here, the suspension will consist of particles of a wide
size distribution. The major effect that this will have on the system will be to change the
structure and characteristics of the cake (i.e. voidage, permeability and critical shear stress).
In this chapter, three phenomena attributable to the presence of polydisperse particles will be
discussed - hydraulic compression of the cake (hydraulic compression effect), preferential
deposition of smaller particles (preferential deposition ef fect) and infiltration of finer particles
into the cake structure (fines infiltration effect).

In Sections 4.2 to 4.4 the mechanisms of these phenomena are discussed together with their
individual effects on the cake structure. Mechanisms are proposed for the preferential deposition
effect and the fines infiltration effect, based on the model of cake growth developed in Chapter 3.
In Section 4.5, these individual effects are combined to indicate the net effect on cake structure
and characteristics during the cake growth period as well as the slow decline in flux period.
This is subsequently applied, in Section 4.6, to explain the various system irreversibilities and
anomalies observed in the experimental study.



4-2

Most of the discussion in this chapter is of a qualitative nature. The major intention is to
determine how changes in cake characteristics may influence flux-time behaviour, and hence
to explain the various seemingly anomalous behaviours observed in the experimental study.

4.2 HYDRAULIC COMPRESSION EFFECT

The flow of fluid through a cake consisting of particles of 2 wide range of sizes could cause .
a rearrangement of the particulate structure, leading to a cake of decreased voidage [Tiller and
Yeh (1987)]). This process is termed hydraulic compression and arises by particles being forced
into the existing void spaces by fluid drag forces. It must be noted that this compression of
the cake is not due to the deformation of individual particles, but to a re-arrangement of the
particles. The extent of hydraulic compression at any plane in the cake, and hence the voidage
at that plane, is determined by the effective compressive force, F,, experienced by particles
in that plane.

A hypothetical solids compressive pressure, P, may be introduced, given by :-

F
p - ks (4.1)
g A
where F, = compressive force experienced by particles at a plane in the cake (kN)
A = superficial area of the plane (m?)

Stated alternatively, the voidage decreases as the solids compressive pressure, P, increases.

The fluid flow around each particles generates friction and drag forces which manifest as a
decrease in the liquid hydraulic pressure, P,, in the direction of flow. These drag forces are
transmitted from particle to particle and eventually to the support medium. At equilibrium,
the effective compressive force, F ,, experienced by particles at a plane in the cake is equal to
the cumulative drag forces up to that plane (Figure 4.1), 1.e.

F, = ) Fy (4.2)

where F, = fluid drag force on particle

Also, at any plane in the cake, the cumulative drag forces up to that point equal the liquid
hydraulic pressure drop up to that point :-

Y Fq = (P..;— P,) A | (4.3)

where P = liquid pressure at free cake surface (kPa)
(i.e. operating pressure)
P, = liquid hydraulic pressure (kPa)



4-3

&”’;E,irg_ pione ~ Permeate Flow g;ﬁ‘r‘f%ce
= mncl drag
> LR ~
! form drag
PL = P->F, PL =P
P.=F /A P=20
FIGURE 4.1 Idealised Representation of Cumulative Drag Forces Through
Cake '
From equations 4.1 to 4.3 :-
P, + P, = P (4.4)
Differentiating with respect to distance through the cake, w,
dP ar
: o+ -0 " (4.5)
dw dw
where w = distance through cake (m)

Equations 4.4 and 4.5 describe the variations in P, and P, through a cake formed on a flat
surface. For a cake formed on a radial surface, the force balance is somewhat complicated
since the drag forces are also transmitted in the azimuthal direction ("hoop stress") [Tiller and
Yeh (1985)]. The pressure balance equation for a cylindrical cake is :-

dP; dP, P,
+ + (1-ENY= =0 4.6
dr dr ( o) r , ( )
where FE, = earth stress ratio

lateral stress / radial stress
radial distance through cake (m)

n

-
Il

e

Except for thick, relatively incompressible cakes, the P, and P, profiles described by
equation 4.6 do not differ substantially from that obtained from equation 4.5 [Tiller and
Yeh (1985)]. Stated alternatively, if the thickness of the cake is not great compared to the
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radius of the tube, the p, and p, may be approximated by the flat cake equations, equations
4.4 and 4.5. In the rest of this discussion, it will be assumed that equations 4.4 and 4.5 adequately
represent the P, and P, profiles through the cake.

The hydraulic pressure, P,, is a maximum at the cake surface and progressively decreases

towards the medium, due to fluid drag losses. The solids compressive pressure, £, is zero at
the cake surface and progressively increases towards the support medium as the cumulative
drag forces experienced by the particles increase. Hence, the local voidage, 3 , will progressively
decrease towards the medium, For a slightly compressible cake, and assuming that the hydraulic

resistance of the support medium is negligible, P,, P, and B will typically exhibit profiles as
in Figure 4.2.

l Flow
cake surface
h -solids
v compressive
\ pressure
)
y ()
L}
LY
L]
‘\
p ligquid
AN hydraulic B
N pressure
. (P
\“
0 P
Pressure Voidage
Profiles Profile
FIGURE 4.2 Pressure and Voidage Profiles Resulting from Hydraulic
Compression of the Cake

This hydraulic compression of the cake is highly irreversible ie. if P, at a point is now
decreased, e.g. by decreasing the fiuid flow through the cake, particles cannot retrace paths
out of the void spaces, and hence the voidage will remain at the level determined by the higher

P,. Asa cake grows, the P, and P, profiles will change. However, particles at any pomt
in the cake will always be exposed to an increasing P, (Figure 4.3).

The hydraulic compression and variation in P,through the cake has two mgmf:cant effects on

the cake characteristics - variations in permeability and variations in critical shear stress through
the cake.
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FIGURE 4.3 Change in Solids Compressive Pressure Profiles as Cake Grows

4.2.1 Radial Variation in Permeability

The permeability at a point in the cake (K ) is related to the voidage at that point, and will
decrease as the P, at that point increases. The general relation between permeability, X , and
P, is given by [Foust et al. (1980)}:-

K = Kk, PV (4.7)
where K = permeability {(m?)

P, = compressive pressure (kPa)

K, = aconstant

g, = aconstant (< 0)

Thus, the permeability decreases towards the wall, Typical permeability profiles are shown
in Figure 4.4 for slightly compressible and highly compressible cakes.

A major significance of this permeability profile is that most of the overall cake resistance is
offered by cake layers closer to the wall. On moving away from the wall, the contribution
that each layer makes to the overall cake resistance progressively decreases,
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FIGURE 4.4 Permeability Profiles Resulting from Hydraulic Compression of
Cake

4.2.2 Radial Variation in Critical Shear Stress

In Section 3.7, the concept of critical shear stress, t.., , was introduced. This is the minimum

axial shear stress required to destabilise particles at the cake surface. It was further noted
that T, is a function of the fluid drag forces around the particle and inter-particle forces
(particle friction) experienced by the particle. The inter-particle forces will increase as
particle-particle contact increases i.e. as the voidage decreases. The critical shear stress will
thus be a positive function of solids compressive pressure,

T, = function (sz, Fd) (4.8)

where g,
Fq

a constant (> 0)

n

fluid drag force

This is analogous to the powder yield locus in soil mechanics, where the critical shear stress
for failure in a powder is a function of the compressive stress being experienced by the powder
[Smith (1982)]. '

In the surface layers of the cake, P, is small and t,, will be determined predominantly by
the fluid drag force. On moving towards the wall, P, increases and is likely to be the major
determinant of t.,. By the earlier definition of v_, it could be argued that the concept
cannot be applied to particles within the cake. For particles within the cake 1., may be
conceptualised by noting that if particle layers above the layer being considered were removed,
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thereby making the layer a surface layer, the layer will remain at the voidage it attained when
it was an inner cake layer. Thus although the effective P, on the layer will now be approximately
zero, the T, for the layer will be determined by the maximum P, that it was exposed to
when it was an inner cake layer.

Hydraulic compression of the cake will thus result in the critical shear stress progressively
increasing towards the wall (Figure 4.5). It can be seen that if the available shear stress due
to the axial fluid flow is T, , only a fraction of the cake can potentially be destabilised and
removed.

j Flow

be remaved if
avoilable sheor

moximum froction
of coke thet may [
stress = 7,

7

Critical Shear Stress
Profile

FIGURE 4.5 Critical Shear Stress Profife Resulting from Hydraulic
Compression of Cake

4.2.3 Svmmary of Hvdraulic Compression Effect

Hydraulic compression of the cake results in a P, profile being established, the P, being small

at the cake surface and progressively increasing towards the wall. This manifests as variations
in the permeability, X , and the critical shear stress, t... , through the cake. The permeability
is ata maximum at the céke surface and decreases towards the wall. Resultantly the contribution
that each layer makes to the overall cake resistance progressively decreases on moving away
from the wall. The t,., is relatively small at the cake surface and increases towards the wall.

e



4.3 PREFERENTIAL DEPOSITION EFFECT

Variou workers have observed that on cross-flow filtering a suspension containing polydisperse
particls, the cake would preferentially be composed of the smaller particle size fractions, and
furth er that the average particle size decreases as the operating velocity is increased
[Bakeret al. (1985), Harrison et al. (1981)].  In this study, this phenomenon is termed the
preferential deposition effect. Tt should be noted that unlike the fines infiltration effect, ie.
penetrition of finer particles into the existing cake structure, the preferential deposition effect
dictate: the size of particles deposited during the growth of the cake. In this section (4.3), the
mechanism of this preferential deposition and the effect that this has on cake characteristics
is inwestigated.

Baker ¢t al. (1985) proposed a mechanism by which finer particles could preferentiaily be
depositd based on the inertial lift effect (see Section 3.2.1.1 for a discussion of the inertial
lift e ffect). The lift force on a particle is a function of, inter alia, the particle size. Thus,
at a given velocity larger particles could experience a net lift force directed away from the
wall while small particles would experience a net convective force directed to the wall, leading
to a cake preferentially composed of the smaller size fractions.

An alternative mechanism for the preferential deposition effect is proposed here, based on the
cake growth and limit mechanism discussed in Section 3.7. The initial step in the back transport
of particles is the shearing of particles off the cake surface to form a layer whose concentration
is greater than the bulk concentration (the precake). This shear removal will occur if the fluid
shear stress at the cake surface, T, is greater than some critical shear, ‘Cc.m . If mono-disperse
particles are considered, all particles which reach the cake surface will be inherently unstable
and will be sheared off into the precake if t2 <., . If polydisperse particles are considered,
three scenarios are feasible.

Consider three particles, a, b and ¢, arriving at similar holes in the cake surface (Figure 4.6).
Under the action of the available shear stress, Particle a will be inherently unstable and will
be sheared off into the precake. Particle b, however, will be stable and will remain in the
cake surface. Particle ¢ does not perceive a barrier to its motion and will penetrate'the cake
surface. The effect that particle penetration will have on cake characteristics is discussed in
Section 4.4. Here, the effects that particles @ and b have on the cake formation will be
addressed.

For simplicity, it will be assumed that the bulk suspension consists only of two sizes - a and
b. Consider 4 control volumes, as in Figure 4.7 - around the cake surface (C,, ), the precake
(C.; ), the suspension zone (C,,) and the cake surface and precake combined (C,4).
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FIGURE 4.7 Control Volumes Near Cake Surface

‘The number fractions of particles a and b in each zone are denoted by x, and x, where i
represents the particular control volume. Further, x,,+x, =1 . The significant particle
exchange mechanisms that occur are depicted in Figure 4.8. Particles are convected from the



suspension zone into the precake and simultaneously a back-transport of particles occurs from
the precake to the suspension zone. Particles from the precake are convected onto the cake
surface and may be sheared off back into the precake.

SuUspension

zone Cv3
convection back /
diffusion
precake C v? C va
\ convection / I
L \ » !
cake \ Aﬁring
surface '
Cvi
e e———————————————————— 1
FIGURE 4.8 Particle Transport Processes Between Control Volumes

Assume that initially all contro! volumes have the same size distribution i.e. x, = Xq2= xq; and
X1 = Xpp= Xp2 . At some time, t, , particles of both sizes « and b are convected onto the cake
surface. Assume further that at the given surface shear stress most particles of size b deposit
stably while all particles of size a are sheared off into the precake.

At this instant, the fractions of @ and & in the cake surface and precake will differ from the
bulk size distribution. However, the mean size distribution in the cake and precake combined
(C.,+) will be the same as the bulk i.e. '

At time ¢, :
C, (cake surface) X< X3 Xy > Xy,
C,.(precake) X 2> X g3 Xp2 < Xy
C,4(cake surface and precake) X g™ Xag ) Xps=™ Xpg

Now there is a continuous convection of particles from C, to C,, simultaneous to the
back-transport from €,, to C,,. During the cake growth period, the rate of convection into
the precake will exceed the rate of back-diffusion. The overall concentration of the precake
will thus increase until at some time t,+ At the critical concentration will be reached and C,,
will consolidate into cake. The cake will now consist of bothC,, and C,, ie.C,4. The mean
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size distribution of the cake will be indicated by x,, and x,,. The objective here is to
determine how x,, and x,, will compare to the bulk size distribution, immediately after C,,

has consolidated into cake.

Particles convected into C,, from C,; will have a size distribution of x,; and x,;. Particles

experiencing back-transport from C,, to C,; will have a size distribution of x,, and x,,. This
exchange serves to decrease the difference in size distributions between C,, and C,;. Thus,
at the instant of consolidation of C,, into cake, x,, and x,, will be determined by the extent
of particle exchange that has occurred between C,, and C,; during the period At.

The extent of this particle exchange between C,, and C,; will be indicated by the ratio (rate

of back diffusion / rate of convection) i.e. (R,/®.). During the cake growth period, of course,
this ratio will be less than 1. If the ratio is relatively small, then the time taken to reach the
critical concentration, At, will be small and very little gross particle exchange would have
occurred before C,, reaches the critical concentration.

Thus, if (R/RX)~-0,

(xaz)at time (,+At ~ ('\‘az)at time ¢,
(be)at time ¢+ Al = (be)at time ¢,
Hence
(xa4)at time t,+At = ('xﬂ“)at time ¢,
= (Xas3)
(xb4)at time t;+At = (xb4)at time t,
= (Xe3)

Thus, for a small (R4/R.) the mean cake particle size will be similar to the mean particle size

in the bulk suspension.

If the ratio (R4/R.) is relatively large, At will also be relatively large and substantial particle
exchange would have occurred between C,, and C,;, minimising the differences in size
distributions between these regions.

Thus, if (Ra/R)= 15,

R

(xa2)at time t,;+Atl (Xaz)

(be)at time t;+At = (X53)
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However,
(xal)at time ¢, +At = (xal)at time ¢,
< (Xa3)
'(xb/)at time ¢, +At = (xbl)at time 1,
> (Xs3)
Hence,
(xa4)at time ¢,+At < (Xa3)
(xw)at time ,ld,A,. > (X4p3)

In this case, the mean particle size in the cake would be less than the mean size of the bulk
suspension. '

The above discussion is simplistic, in that variations in size distribution through the suspension
zone have been neglected. The important point, however, is that the mean particle size in the
cake may be close to or substantially less than the mean particle size in the bulk suspension,
and will be determined by the relative rates at which the convective and back-diffusive transport
mechanisms occur.

To summarise thus far, during the cake growth period particles below some critical size would
deposit stably onto the cake surface or alternatively penetrate the surface, while larger particles
will be sheared off into the precake. This critical particle size will decrease as the surface
shear stress increases. The extent of particle exchange between the precake and suspension
zone will subsequently determine the size distribution in the precake and hence the mean particle
size in the cake. The ratio (RX,/R.) indicates this gross exchange. If the ratio is low, the
mean cake particle size will be similar to the bulk mean size. This mean cake particle size
will decrease as the ratio increases.

Both the surface shear stress and the ratio (R,/R®.) will increase as the suspension velocity

increases. One implication of this is that the mean cake particle size will decrease as operating
velocity is increased - the experimentally observed preferential deposition effect. A second
implication of this is that the cake will have a radial variation in particle size distribution. On
start-up the shear stress ‘at the surface and the ratio (X,/®c) are relatively small. Hence, the
particle size distribution of the cake layers next to the wall will be close to the bulk distribution.
As the cake grows, the suspension velocity in the free channel increases. Thus the mean
particle size in each cake layer will progressively decrease on moving away from the wall,
reaching a minimum at the surface of the steady-state cake. To the best of the authors
knowledge, no experimental studies into radial variations in cake particle size distribution have



been reported, and the above effe;:t cannot be confirmed. The observation that the mean cake
particle size decreases with time [Baker et al. (1985), Hoogland et al. (1988)] could possibly be
a manifestation of this radial variation in particle size.

The variation in particle size distribution through the cake will result in the local voidage also
varying through the cake. It is thus expected that the local permeability, X , and local critical
shear stress, ..., will also exhibit profiles through the cake. The qualitative effect that the
preferential deposition of particles will have on cake characteristics during the cake growth
period is illustrated in Figure 4.9.
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FIGURE 4.9 Effect of Preferential Particle Deposition on Cake Characteristics

During the Cake Growth Period




In view of the preferential deposition effect, it is necessary to modify the conceptual picture
presented earlier (Section 3.8) of particle activity at the cake surface after the limiting cake
thickness has been reached.

After the limiting cake thickness has been attained, particles will still be convected to the cake
surface. If the particles are monodisperse, all will be sheared off back into the precake. If
polydisperse particles are considered, some fraction of the particles which convect to the surface
will deposit stably into holes in the surface. However, the number of holes in a cake surface
that may be stably occupied by particles of a particular size range is finite. ~As these holes
become progressively occupied, particles of that particular size range will no longer be able to
deposit stably onto the cake surface. Thus, after the limiting cake thickness is reached,
preferential deposition of small particles will continue only until the cake surface becomes
"saturated" with these smaller size fractions. This will result in the 3. K and t.., of the surface
layer progressively changing after the steady-state has been reached, until some saturation value
is attained (Figure 4.10).
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FIGURE 4.10 Effect of Preferential Particle Deposition on Cake Surface
Characteristics After the Steady-State
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4.4 FINES INFILTRATION EFFECT

In Section 2.5.1 it was shown that, for the system under study, there are strong indications that
the slow long-term decline in flux is due to a progressive infiltration of finer particles into the
existing structure, leading to a cake of progressively decreasing permeability.  Here, the
mechanism of this infiltration and the effects that this has on cake characteristics will be
examined.

If the suspension consists of polydisperse particles, some of the particles which convect to the
cake surface may be smaller than the void spaées between the particles in the surface. In
contrast to depositing stably in the voids or being sheared off into the precake, these smaller
particles will penetrate the cake surface. These fines may travel for some distance in the pores
between the cake particles, eventually coming to rest at a smaller void space, when a group of
fines bridge across a void, or by adhering to other cake particles. The local voidage, and
hence local permeability of any layer in the cake will decrease as the layer becomes impregnated
with fines,

Fines infiltration will occur during the cake growth period as well as after the limiting cake
thickness has been attained. During the cake growth period, however, the increase in cake
resistance due to fines infiltration is likely to be insignificant compared to the increase in
resistance due to cake growth. Hence, the effects of fines infiltration on cake resistance will
be most noticeable only after the steady-state cake thickness is reached.

The volume of voids in the cake is finite. Further, the size of particles that may infiltrate a
particular pore in the cake is limited by the geometric arrangement of the cake particles. If,
for example, spherical particles of diameter d are considered, the maximum size of particle
~ that may penetrate the void is~ 0,15d . If this void is subsequently occupied by a particle,
the diameter of the new voids decreases to = 0,01 d (Figure 4.11).

FIGURE 4.11 Geometric Limit of Infiltrating Parficles




Thus, for any layer in the cake there exists some maximum, or saturation volume fraction that
may be occupied by fines. Effectively then, the fines content of a cake will increase with
time and asymptotically approach some value corresponding to a fully saturated cake. The
flux will thus decline and asymptotically approach some ultimate flux value.

The question arises as to whether fines saturate the entire cake volume, (volume effect) or
whether this saturation is limited to the layers near the cake’s surface (surface effect). This
has significant implications for system behaviour, as will be demonstrated shortly.

There are strong indications that saturation by fines is limited to the surface layers of a cake.
The first stems from the fiux-time curves obtained at different operating conditions, as explained
below.

The time taken to approach full saturation wilt be proportional to the volume of cake to be
saturated and inversely proportional to the rate at which fines are convected into the cake.
Assume firstly that the full cake volume is to be saturated. The saturation volume, ¥V, will
be given by :-

Via = T(R*-(R-1)*)L (4.9)
where V,, = volume of cake available for saturation by fines (m?3}

R = radius of tube (i.e. outer radius of cake) (m)

i, = thickness of cake (m)

L = length of cake {m)

Thus, V,, will increase as the cake thickness increases.

If the system is operated at a high superficial inlet velocity, the cake thickness will be relatively
small and the flux relatively high. Thus, I",, will be relatively small and the rate of convection
of fines into the cake relatively high, indicating that the cake will rapidly approach its full
saturation level. The flux will thus asymptote to its ultimate value shortly after the steady-state
cake thickness has been attained. Conversely, if the system is operated at a low inlet velocity,
the steady-state cake thickness will be relatively large and the flux relatively low. In this
instance, the flux should exhibit a long period of decline before asymptoting to its ultimate
value. Thus, if fines saturate the entire cake, the expected flux decline curves obtained at
different operating velocities will be as depicted in Figure 4.12.

Alternatively, assume that fines saturate the cake only to some depth w below the cake surface.
The volume available for saturation in this instance is given by :-

Ve = T[(R-t,+w) = (R-1.)?] (4.10)

where w = distance below cake surface to which fines penetrate {m)
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Equation 4.10 indicates that the volume available for saturation decreases as the cake thickness
increases, due to the effects of the cylindrical geometry. Hence both V., and the rate of
convection of fines into the cake will increase as operating velocity increases. Now three
possible trends exist for flux decline curves obtained at different velocities, depending on the
values of flux, t. and w.

Case 1 If at higher operating velocity the greater V,,, is outweighed by the higher flux, the
time to reach full saturation wili be less than if the system were operated ata lower

velocity. In this instance the time to reach saturation will increase as operating
velocity decreases.

Case 2 If at the higher operating velocity, the higher flux is outweighed by the greater V,, ,

a longer time would be taken to reach the saturation value than if the system were
operated at a lower inlet velocity. Hence the time to reach saturation will decrease
as operating velocity decreases,

Case 3 The last possibility is that higher V', ’s are just offset by higher fluxes. Here the

time to reach saturation will be relatively independent of operating velocity.

These possible trends for flux decline at different operating velocities are depicted in Figure 4.13.
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The experimental fiux-time curves in Period II, obtained at different inlet velocities, are
presented in Figure 2.9 (repeated here for convenience). The trend exhibited is contradictory
to Figure 4.12, but is relatively consistent with Case 2 and Case 3 of Figure 4.13, indicating a
strong probability that fines saturation is likely to be a surface effect.
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FIGURE 2.9 Flux Decline Curves from Experimental Study
(repeated)

The second indication that saturation by fines is likely to be limited to the surface layers
concerns the observed system response to a step decrease in velocity (Figure 2.20, repeated in
Figure 4.14). To recap, curves | and 2 were obtained by starting up the system at inlet
velocities of 1,13 m/s and 1,70 m/s respectively, and curve 3 was obtained by starting up the
system at 1,70 m/s and then step-decreasing the velocity to 1,13 m/s after 60 minutes. The
likely cake thickness profiles for curves 1 and 2 (cake 1 and cake 2) are shown in Figure 4.14.

After an initial increase, the cake thicknesses reach their steady-state values and then remain
approximately constant. _The cake thickness profile for curve 3 (cake 3) will follow cake 2 up
to ¢ = 60 minutes. At this point the velocity decreases, and hence the cake thiqkness will
increase. ' '

After the velocity decrease at point A, the axial and radial fluid velocities in the system will
be equivalent to those at point C. If cake 3 had not experienced any changes in its Characteristics
during the period t = 30 minutes to ! = 60 minutes, the cake would grow and eventually become
limited to the steady-state value for curve 1, ie. .
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Velocity

However, over the period t = 30 minutes to { = 60 minutes, the specific cake resistance of cake
3 would have increased to above that of a "fines free" cake. Hence, the final cake thickness
obtained after the velocity decrease, t ; , must be somewhat lower thant,, . It must be emphasised
that, due to the increase in the specific cake resistance of cake 3 over the period t =30 minutes
to t = 60 minutes, . cannot be greater than ¢, .
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Assume, firstly, that fines saturate the entire cake volume. Sincet,;<t,,, the final saturation

resistance for cake 3 will be less than or equal to the final resistance for cake 1. Hence, the
ultimate flux for curve 3 should be greater than that of curve 1. This is inconsistent with
Figure 4.14, which clearly indicates that curve 3 drops to a value below curve 1.

Alternatively, assumes that fines saturate only the surface layers of the cake. In this instance,
cross-sectional profiles through cakes | and 3 will be as in Figure 4.15. Cake 1 reaches its
steady-state thickness whereafter its surface layers become progressively saturated with fines.
Similarly, cake 3 reaches its limiting value whereafter the surface layer becomes progressively
saturated with fines. At ¢ = 60 however, cake 3 experiences a growth in thickness. Now a
"fines free" cake grows above the existing partially saturated surface. This new surface will
now become progressively infiltratéd with fines.

Ir
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FIGURE 4.15 Expected Cake Cross-Sections if Fines Saturate Only The

Surface Layers of the Cake

On comparing cakes 1 and 3 at ¢ = 90, it is seen that cake 1 consists of one region that is fairly
saturated with fines and a substantial fraction that is relatively fines free. Conversely, cake
2 consists of two regions that are fairly saturated with fines. The resistance of cake 3 is thus
likely to be greater than that of cake 1, indicating that the flux for curve 3 should be lower
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than that of curve 1. This is consistent with Figure 4.14, indicating that the observed flux-time
response obtained by step-decreasing the operating velocity is consistent with the assumption
that fines saturation is limited to the surface layers of the cake.

Unequivocal determination of whether fines saturation is a surface or a volume effect will
necessitate sampling and analysis of the cake. On the basis of the above arguments, however,
it seems most likely that this saturation is limited to the surface layers. This progressive
saturation of the surface Jayers will change the voidage, and hence the permeability and critical
shear stress profiles, of the surface Iayers. The effect of fines infiltration on cake characteristics
may thus be represented as in Figure 4.16.
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4.5 NET EFFECT ON CAKE STRUCTURE AND CHARACTERISTICS

During the cake growth period, the significant effects that will determine cake characteristics
will be the compression effect and the preferential deposition effect. The dominant effect is
likely to be hydraulic compression. Preferential deposition may be regarded as distorting the
profiles that result from hydraulic compression, causing the voidage at the surface layers to be
slightly lower than that determined solely by compression (Figure 4.17).

T

crit

--------------- profiles due to compression effect only, for o
cake composad solely of the smallest particles

————— profiles due to compression effect only, for o
coke composed salely of the lorgest particles

net effect ~ asymictes to small porticle profiles
at surfoce, and lorge particle profiles at wall

FIGURE 4.17 Effect of Preferential Particle Deposition on Profiles Resulting
from Hydraulic Compression of the Cake

Since the preferential deposition effect is a strong function of the rates of exchange between
the precake and the bulk, the observed influence on cake characteristics is likely to be small
during the initial stage of cake growth, but will increase as the limiting cake thickness is
approached. Hence, the likely voidage, permeability and critical shear stress profiles during
the cake growth period will be as in Figure 4.18.
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After the limiting cake thickness has been attained, the main influences on cake characteristics
will be the preferential déposition effect at the cake surface and the infiltration of fines into
the surface layers. Both effects will eventually be limited by saturation of the_surface and
surface layers respectively. Effectively, after the limiting cake thickness has been reached,
the change in cake characteristics will be limited to the surface layers and will be as in

Figure 4.19.
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4.6 APPLICATIONS

The effects of the various changes in characteristics on flux-time behaviour will be as follows :-

4.6.1 Long-term Flux Decline

The slow long-term decline in flux has already been explained in Section 2.5.1 and Section 4.4.
Fine particles progressively infiltrate the surface layers of the cake resulting in a progressive
decline in the cake permeability and hence in the permeate flux. However, there is some
maximum or saturation fines fraction that may occupy the surface layers. Thus, the fines
content asymptotically approaches this saturation value and the flux will asymptotically approach
some ultimate flux valuel.

4.6.2 Irreversibility of Cake

The initial step in the removal of particles from the cake is the shearing of particles off the
cake surface. This will only occur if the shear stress at the surface exceeds the critical shear
stress of the layer.

The shear stress at the surface is determined by the suspension velocity and physical properties.
The critical shear stress exhibits a profile through the cake and in general increases towards
the wall. It is thus feasible that at a specified suspension velocity, only some fraction of the
cake may potentially be destabilised.

It is proposed that at normal operating conditions, the available shear stress only exceeds the
critical shear stress of a small fraction of the cake. This fraction will decrease with time, as
fines saturation of the surface layers progressively increases the T, of these layers (Figure 4.16).

Thus, when an attempt is made to decrease the cake thickness e.g. by increasing the velocity,
decreasing the concentration or decreasing the pressure, a fraction of the cake surface layers
will be removed. However, since the contribution of these surface layers to the overall cake
resistance is small (see Section 4.2), the net effect on the measured permeate flux will not be
significant. Cake removal will eventually become limited when the available shear is unable
to exceed the critical shear stress of the current surface layer.

Clearly, at higher axial shear stresses, the fraction of cake that is removed will increase,
eventually manifesting as an increase in permeate flux. For the operating range investigated
in this study, however, this did not occur. A further effect to be noted is that the suspension
velocity in the free channel will decrease as cake is removed, thereby decreasing the available
axial shear stress at the surface. The effect of this would be to further decrease the fraction
of cake that may be removed by a specified increase in inlet velocity or decrease in pressure.

i This ultimate flux is probably not attainable in a system that operates on 2 closed recycle basis, as in this study,
gince the fines content of the feed stream progressively decreases with time. Hence if a constant flux is obtained
after some time this cannot unequivocally be attributed to saturation of the cake but could merely be due to
depletion of fines.



4.6,.3 Cake Growth in Period 11

In Section 2.5.3 it was observed that if the velocity is decreased, bulk concentration is increased,
or pressure is increased during the slow decline in flux period, the final cake resistance is
higher than that obtained by starting up the system at the lower velocity, higher concentration
or higher pressure. As noted in Section 4.4, this apparent anomaly is explicable if it is assumed
that fines saturation is limited to the surface layers of the cake.

A cross-section through the cake obtained by starting up the system at the "thicker cake’
condition indicates that the surface layers will be relatively saturated with fines while the rest
of the cake will be relatively fines free (Figure 4.15). Conversely, a cake obtained by starting
up the system at the "thinner cake" condition and then increasing the cake thickness after a
significant time lapse will consist of two regions that are relatively saturated with fines. Since
the permeability of a cake layer is a strong function of particle size, the total resistance of this
latter cake will be somewhat higher than the resistance of the cake obtained by starting up the
systemn at the "thicker cake" condition.

4.7 SUMMARY OF CHANGES IN CAKE STRUCTURE
AND CHARACTERISTICS

For the system under study, three phenomena that are likely to cause changes in the cake
characteristics are hydraulic compression of the cake, the preferential deposition effect and the
fines infiltration effect. These phenomena are mainly due to the presence of a wide size range
of particles in the suspension.

Hydraulic compression occurs when fluid drag forces cause an irreversible collapse of the
particulate structure, leading to a cake of decreased voidage. The preferential deposition effect
concerns the deposition of smaller particles onto the cake, in preference to the larger size
fractions. This is explicable in terms of a simple model based on rates of transport to and from
the precake. The fines infiltration effect concerns the progressive infiltration of very fine
particles into the existing cake structure, until some saturation fines content is achieved. There
are strong indications fines saturate only the surface layers of the cake, and not the entire cake
volume,

The above phenomena change the voidage profile and hence the permeability and critical shear
stress profiles of the cake. The individual effects are summarised in Table 4.1. '



TABLE 4.1 Individual Effects on Cake Characteristics
Effect on
Yoidage Permeability Critical shear stress

B K .ccrit
Hydraulic Decreases towards Decreases towards Increases towards tube
Compression tube wall tube wall wall '
Preferential Decreases towards Decreases towards Increases towards cake
Deposition cake surface cake surface surface
Fines Decreases in cake Decreases in cake Increases in cake
Infiltration surface layers surface layers surface layers

Hydraulic compression is most likely to be the dominant cause of changes in cake structure
and characteristics during the cake growth period. The fines infiltration effect is most observable
after the limiting cake thickness has been achieved.

The apparent irreversibility of the cake, the long-term flux decline, and the observation that
the final cake resistance is dependent on the operating path taken to reach the operating point,
are explicable in terms of the above phenomena.
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Clmpfer 5

MATHEMATICAL MODEL OF THE
STEADY-STATE CONDITION

S.1 INTRODUCTION

In Chapter 3 it was shown that, for the limestone system used in the present study, the steady-state
condition is determined by a convection-diffusion process. The radial fluid flow towards the
wall convects particles to the cake surface. The mechanisms of shear induced hydrodynamic
diffusion, entrainment by turbulent bursts and entrainment by turbulent eddies, effect particle
diffusion from the concentrated suspension layer next to the cake back to the bulk suspension.
The steady-state cake thickness is attained when the equilibrium concentration of this
concentrated suspension layer falls below the critical concentration for consolidation.

In this Chapter, this qualitative mechanistic model is formulated into a mathematical model of
the steady-state.

Convection-diffusion models for turbulent CFMF have been formulated by previous workers,
as discussed in Chapter 3. In general, previous workers assumed loose forms for model functions
(e.g. diffusivity) and model parameters were subsequently evaluated by regression on
experimental results. Thus, despite mechanistic inconsistencies associated with those models,
their mathematical formulations do permit effective correlation of experimental results. In
view of this, the formulation of yet another model based on loose, albeit different, forms for
model functions and sufficient regression parameters to enable successful correlation with
experimental results will not necessarily be a significant contribution towards modelling of
CFMF.

The approach adopted here is to attempt to formulate mode! functions rigorously from existing
technology and correlations for fluid and particle dynamics, with minimum recourse to regression
parameters. Noting the considerable differences between a CFMF system and systems usually
employed in rigorous fluid and particle dynamics studies, it is recognized a priori that this
modelling approach is unlike to yield as good a fit with experimental observations s the previous
"full regression” models. However the evaluation of the applicability and short falls of current
technology is an important point of departure towards the ultimate aim of a fully predictive
turbulent CFMF model.
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In Section 5.2, the appropriate steady-state continuity and hydraulic resistance equations are
identified. The differences between a CFMF system and those systems usually employed in
fluid and particle dynamics investigations are briefly reviewed in Section 5.3, in order to identify
differences that may be ignored and those that must be explicitly accounted for when applying
existing transport correlations to CFMF. In Section 5.4, mathematical formulations are developed
for the various model functions needed to solve the steady-state equations. The numerical
solution procedure is outlined in Section 5.5 and the approach adopted in quantifying model
parameters is discussed in Section 5.6. Model predictions are presented and discussed in
Section 5.7. Finally, the model is evaluated and summarised in Section 5.8.

5.1.1 A Reminder on State and Measured Variables, and the Wall

In this chapter, frequent reference is made to- fluid and particle dynamics technology and
correlations developed by other workers. Most of these previous studies have concerned systems
where no cake exists, and hence the superficial and channel velocities are the same. In applying
these correlations to CFMF, it must be realised that velocities should be based on the free
channel radius, R,., and not on the tube radius, R. Accordingly, in reporting correlations,
their nomenclature has been suitably adapted to reflect this fact. Hence, where a correlation
refers to a bulk average axial velocity, U , this is reported here as a bulk average channel velocity,
U., and permeate velocities at the wall are reported here as permeate velocities at the cake
surface, V ., .

Reiterating the points made in Section 3.4.2, it should be noted that wall refers to the surface
that bounds the flow field. In systems where no cake exists, the wall resolves to the wall of
the tube or pipe. In CFMF, however, the wall is the inner surface of the cake, and not the
tube wall. This should be remembered when interpreting graphs and correlations in this chapter.
Where it becomes necessary to refer to the wall of the CFMF tube, this will be specifically
referred to as tube wall.

5.2 THE STEADY-STATE EQUATIONS

5.2.1 Continuity Equation

The one-dimensional continuity equation applicable to convection-diffusion controlled processes
ie,

oC

vC = D—

er
is widely known and applied in the modelling of membrane separation processes. Here the
origin of the equation is briefly reviewed in order to highlight the assumptions inherent in the
equation and hence to ascertain whether the equation is applicable to the system used in the
present study.
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The equation of continuity for the particles in radial co-ordinate systems is :-

oC

5t V-(CV) = V-(D,VC) (5.1)
where C = particle concentration (volume fraction)

\Y = suspension velocity vector (m/s)

D, = particle diffusivity vector (m2/s)

t = time (s)

The following simplifying assumptions are made :
(i) azimuthal gradients, i.e. (3/98), are negligible,
(ii) the concentration profiles are at a "steady-state" 1 ie, 2C/dt = 0.

(i1} radial concentration gradients are confined to a thin concentration boundary layer, of
thickness & , next to cake surface.

With the above assumptions, equation 5.1 reduces to :

r < (R -8)
C = Cyg
r > (R,-8)
120 o(CU) 1 2 aC oC P ( (ac aC))
——(rVC)+ —— = ——\rD —+— ||+ —I D —+— 5.2
rr);r'(rl ©) oz ror\"“rr\ar oz az\ P *\or oz (5.2
where C,; = bulk concentration (volume fraction)
r = radial distance from tube centreline (m)
R. = core radius {m) (= R-1.)
R = tube radius {(m)
v = suspension velocity in radial direction (m/s)
U = suspension velocity in axial direction (m/s)
D, . = particle diffusivity in radial direction {m2/s)
D, . = particle diffusivity in axial direction (m?/s)
t. = cake thickness (m) '
1 Note that the "steady-state” referred to in assumption (ii) refers solely to time-invariant concentration profiles.

The steady-state in CFMF is a unique situation where concentration profiles are time-invariant and there is no
net radial solids transport across the boundary layer. It is, however, entirely possible to have systems where the
concentration profile is time-invariant while a net solid transport deoes occur,
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Equation 5.2 describes the concentration distribution in a tube of arbitrary length, explicitly
including gradients in the axial direction. A substantial simplification may be made by
considering a differential element of a tube, where concentration gradients in the axial direction
are negligible in comparison with gradients in the radial direction. Most systems may be
divided into differential elements fulfilling the above criterion. A model developed for the
differential element may then be integrated to yield the approximate concentration distribution
along the whole tube [see e.g. Pillay et al. (1988)].

For such a differential element, from equation 5.2, and denoting the radial particle diffusivity,
Dy, simply as D, :

r > (R.-8)

l1e 10 oC

-——((rVC) = —-—irbD_ — 9.3

rar( ) rar( Par) (5-3)
Integration of equation 5.3 yields

oC :
VC-rD,— = 5.4
r r Par Qs ( )

The constant of integration, Q. , indicates the net solids flowrate across any unit length cylindrical

surface in the boundary layer.

Equation 5.4 indicates an interesting implication of the differential element assumption. Since
axial gradients are assumed to be zero, continuity must be observed in the radial direction.
Hence if a net solids transport does occur across the boundary layer (e.g. during cake growth),
the net solids flowrate across any unit length cylindrical surface in the boundary layer must
be constant, as indicated by equation 5.4,

Rearrangement of equation 5.4 yields

oC Qs
VC“‘D‘D; = _F_ (5.5)

Here (VC - D, 8C/dr) indicates the net solids velocity at a particular radius 7. Since the net

solids flowrate remains constant, the net solids velocity must decrease through the boundary
layer, due to the increase in circumferential area. This is indicated by the term (Q,/r).
Hunt et al. (1987¢c), adopting a one-dimensional differential element approach in modelling
cake growth, assumed that the net solids velocity increases through the boundary layer. This
is clearly not feasible from the point of view of continuity.
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A further implication of equation 5.5 is that the concentration boundary layer cannot be large
in comparison with the tube radius. In the extreme instance, when the thickness of the
boundary layer approaches the radius of the tube, the net solids velocity at the inner edge of
the boundary layer approaches infinity, implying that an infinite source of solids exists along
the centreline. Thus, if the boundary layer is large, a differential element analysis is inapplicable
and axial gradients must be explicitly included in order to obtain a realistic solution.

At the steady-state in CFMF, the net solids velocity is zero. This is a unique instance of
equation 5.5 with ¢,=0. Hence
oC
Ve = D_— 5.6
Por ( )
It should be noted that IV in equations 5.2 to 5.5 represents the suspension velocity, comprised

of both the net fluid and net solids velocities relative to the tube co-ordinate system. For the
unique case of zero net solids velocity, I in equation 5.6 reduces to the fluid velocity.

To summarise thus far, equation 5.6 is the one-dimensional convection-diffusion continuity
equation applicable to systems where the concentration profile is time-invariant, the net solids
velocity is zero and axial gradients are negligible in comparison with radial gradients. The
question arises as to whether equation 5.6 is applicable to the system used in the present study.

Fractional changes in operating variables along the tube are presented in Table 5.1 (overleaf).

Since the steady-state cake thickness is a function of pressure, concentration and velocity, it
follows from Table 5.1 that this steady state thickness will exhibit only a small variation in the
axial direction. Further, the variation of concentration in the axial direction is indeed negligible
in comparison with the concentration variation in the radial direction (low bulk concentration
increasing up to packing density).  Accordingly the tube used in the present study may
reasonably be modelled as a differential element.
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TABLE 5.1 Summary of Fractional Changes in Operating Variables along Tube
Run Number Change in Superficial Change in Bulk Change in Pressure
Yelocity Concentration A(P)Y%
AU Y% A(C)%
55 8 g 3
53 7 7 3
48 ) 6 3
52 6 6 3
54 5 6 3
50 8 9 3
47 7 8 3
49 5 6 3
51 5 5 3
59 5 5 6
60 5 6 4
61 6 7 2
58 6 7 2
INUAL I U’(ina)r:(i‘)(out) X 100
ACH% = C‘."(Ouc?(i_nc);(i") X 100
APY® = P(i";;ig“t) X 100
where U, = superficial velocity (m/s)
Ck = bulk concentration (g/£)
P = pressure (kPa)
{in)  refers to inlet of tube
(out) refers to outlet of tube

U (in),Cy(in), P(in) and P(out) were measured. U,(out) and Cj(out) were calculated

by mass balance.

-
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From the qualitative mode! presented in Chapter 3, the appropriate boundary conditions for
equation 5.6 are ;

r= Rc C = Ccrit

r = R_.-6 C = Cq
where R_. = radius of free core (m)

b = boundary layer thickness (m)

C.: = critical concentration (volume fraction)

Cs = bulk concentration {volume fraction)

Integration of equation 5.6 with the above boundary conditions yields :

] ,
¢ v Ccrit)
— dr = In S.7
-ch-b D ( CB ; ( )

P

The steady-state continuity equation is thus given by equation 5.7. Note that 1 and D, in
equation 5.7 are not constants, but are the radial distributions of the radial velocity and particie
diffusivity respectively across the boundary layer.

5.2.2 Hydraulic Resistance Equation

Following Darcy’s Law, the hydraulic resistance equation for a planar cake (cartesian co-ordinate
system) is as follows :-

ap = M, (5.8)
where AP = pressure drop across cake (Pa)

i, = permeate viscosity (Pa.s)

%8 = permeate velocity (m/s)

t, = cake thickness (m)

K = permeability (m?2)

Equation 5.8, however, cannot be directly applied to cylindrical co-ordinate or CFMF systems.
Firstly, although the permeate flowrate remains constant through the cake, the permeate velocity
will change, due to the change in circumferential area. Thus V in equation 5.8 will vary radially
through the cake.

The second problem concerns the cake permeability, K. Most real cakes are compressible to
some extent. Hydraulic compression, arising from fluid flow through the cake, will cause a
solids compressive pressure (P£,) profile to be established through the cake (See Chapter 4).
In cylindrical cakes this #, profile is further complicated by the presence of "hoop" stresses.
The cake permeability is a function of P,, and thus K is expected to exhibit some complex
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profile through the cake. There are also indications that the permeability (or conversely the
specific cake resistance) of a cake formed under cross-flow conditions may be a function of
cross-flow velocity, operating pressure and time from start-up [Baker et al. (1985),
Hoogland et al. (1988)]. It emerges therefore that X may be a complex function of distance
through the cake, velocity, pressure and time from start-up.

A hydraulic resistance equation which explicitly caters for all the various effects on K is beyond
the scopé of the present study. For the present purpose it will be assumed that variations in
permeability through the cake, the effect of cross-flow velocity on permeability and the change
in permeability with time are "second order" effects and may be ignored. Accordingly, the
permeability is only a function of the operating pressure in the system , P , and the dependence
of K on P arises solely from compression effects. -

An approximate hydraulic resistance equation applicable to cylindrical cakes may now be
derived,

FIGURE 5.1 Section Through a Cake Formed on a Cylindrical Surface

L

Across a thin section of the cake at radius r (Figure 5.1),

L Vi(r -
H ()dr

= (5.9)

_dP =

where V(r)= permeate velocity at radius r (m/s).
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From a mass balance, for a cake of unit length in the axial direction :-

V(r)2nr = IV 2nR

where V¥, = permeate velocity at tube wall {m/s)
R = tube radius (m)
Thus,
Vir)y = V“’F (5.10)
Substituting equation 5.10 into equation 5.9 and integrating with the limits :-
r=R-t, P=P,
r=~R P=P,
yields |
P2 i3
H dr
| dP = =V,R| —
P K Ret, T
whence :
L7, R R
AP = In S.11
K R-1{, ( )

5.2.3 Summary of Steadyv-State Equations

The system used in the present study may be approximated as a differential element. The
steady-state condition is thus represented by the simulation solution of the following equations :

Re Ccri
f Yoar - ]n( ‘) (5.7)
R85 Dy Cpy
_ LLII/wR R
AP = % ]n(R—ic) (5.11)

In order to solve the above steady—ﬁtate equations for the steady-state cake thickness {t. ) and

permeate velocity (¥, ) mathematical formulations for 6. and D, in terms of the operating
variables are needed, together with values for C., and K. -



5.3 APPLICABILITY OF CURRENT FLUID AND PARTICLE DYNAMICS
TECHNOLOGY TO CFMF

The major aim is to formulate model functions that are required to solve the steady-state
equations from existing technology in fluid and particle dynamics. Direct application of a
correlation requires complete similarity between the system for which the correlation was
developed and the system to which it is to be applied. There are, however, significant
differences between CFMF systems and the systems used in most turbulent fluid and particle
dynamics studies. The first is that most transport correlations have been developed for
non-porous tubes, whereas in CFMF a significant radial velocity component exists. The second
difference is that most studies have involved systems where the viscosity is uniform across the
cross section of the tube while in CFMF the viscosity is expected to exhibit a significant radial
variation due to the existence of a radial concentration profile. This section (5.3) addresses
the issue of whether these differences must be explicitly accounted for, or whether they may
be ignored.

5.3.1 Applicability of Correlations Developed for Non-porous Tubes to CFMF

The obvious approach is to compare results obtained from studies of turbulent flow in porous
tubes with predictions from correlations developed for non-porous tubes, at the typical conditions
used in this study.

Probably the most significant experimental studies of the fluid dynamics of turbulent flow in
porous tubes are those of Weissberg (1955, 1956). Other experimental studies include those
of Aggarawal et al. (1972), Hirata et al. (1982a) and Mizushina et al. (1972). In a theoretical
approach, Kinney and Sparrow (1970) developed an integro-differential model for turbulent
flow in porous tubes. The model was subsequently extended by Merkine et al. (1971), and
Na (1972). A theoretical model, based on the extension of the mixing length concept, was
developed by Hirata et al. (1982b). These theoretical models, although mechanistically
attractive, are somewhat difficult to implement. In any event, the models of Kinney and Sparrow,
Merkine et al., and Na, used Weissberg’s experimental results for model evaluation. Accordingly
only Weissberg’s studies will be referred to here.

Weissberg measured axial velocity profiles, turbulence levels and friction factors for air flowing
in a porous pipe, for a wide range of axial inlet and radial wall velocities. In contrast to
non-porous tubes, where the non-dimensional velocity, /", is well correlated with the
non-dimensional distance from the wall, ¥~ , no such universal relationship could be found for
porous tubes. Following the correlation approach of Laufer, Weissberg correlated the mean
(time-averaged) axial velocity profiles as follows :-

YO < 20 (wall region)
f(svr o) £(2)

sy = E‘(SU++V_S_°) s (5.12)




Y2z 20 (inner region)

U™ = hg+hglog(¥Y ") (5.13)

where

s = 0,1037(1-2,4861")

. 1 str” il
E(sU™) = —f e?® di
( \f2n 0

1 _(SU'}
E ‘(SU+) = —_—_ e z
Jan
hs = 3,07 (1 + 20,7 V7)
he = 6,75 (1 - 7,67 V)
with  U" = non-dimensional axial velocity
=(U/Ut)
¥ = non-dimensional distance from the wall
= (U /v)
b = distance from the wall (or cake surface) {m)
v = kinematic viscosity (m2/s)
U™ = friction velocity (m/s)
-_— ,.cw
V p
V., = radial velocity at wall (or cake surface) {m/s)
Note that

1 X
E(x) = > erf (E)

where er f(x) is the error function.
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Comparison between friction coefficients in porous tubes with the standard Blasius equation
for smooth non-porous tubes yielded the following :

where

L. 115,8 Ii

fo Uc

f = friction factor in porous tubes

fo = Blasius friction factor for smooth non-porous tubes
= 0,079 (Re)'*-#

Vs = radial velocity at wall (cake surface) (m/s)

U, =bulk average axial velocity in free channel (m/s)

(5.14)

Note that for turbulent flow, friction factors in porous tubes are greater than those in non-porous

tubes (see equation 5.14).

where friction coefficients decrease as suction through the wall increases.

As noted in Chapter 3, this is contrary to that in laminar flow,

The typical effect of radial flow on the axial velocity profile is depicted in Figure 5.2 (a) and
{b). The profiles were calculated from equations 5.12 and 5.13. Figure 5.2(a) depicts profiles
over the whole tube, and Figure 5.2(b) that in the near wall region. Suction of fluid through
the wall results in a flattening of the velocity profile over the core with a subsequent steepening
of the gradient in the wall region.

FIGURE 5.2(a})

Re = 25 000

0,005

Q 0.2 .4 : 0.6 0.8

Y/R.

{whole tube)

1.0

ceantreline

Effect of Radial Fluid Flow on Axial Velocity Profile




5-13

0,7
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0.6 =]
.... -
1 T
0,5 — it -
3 P
1 e
P
U 0.4 .f"""'///
J P
i 0.3 e
3 o —
< -
J ',"// Ves /Uc
0.2 e ——| 00
N ety 0.0025
0.1 - _',.',’
| =~ Ee—— 0,005
0 I ] T
0 0.005 0,04 0,015 0.02
wall
FIGURE 5.2(b) Effect of Radial Fluid Flow on Axial Velocity Profile
(near wall region)

In this study, as well as in most membrane systems, the radial velocity is generally small relative
to the axial velocity. The question arises as to whether, for low radial velocities, the actual
axial velocity profile in a porous tube would differ significantly from non-porous tube profiles.

In applying the above correlations to CFMF, the velocities based on the free channel radius,
i.e. V and U, , must be employed in place of velocities based on the tube radius, i.e. ¥, and
U, . Since the cake thicknesses obtained in the present study are not known, four worst case
scenarios were investigated (Table 5.2, overleaf). Axial velocity profiles calculated from
Weissberg’s correlations for these scenarios are compared to a non-porous tube profile calculated
from Von Karmans universal velocity profile correlations {equations 3.44 to 3.46) in Figure 5.3.
Note that over most of the graph the curves are co-incident, and hence show up as a single
curve,

It is clear that at these low radial velocities the axial velocity profile does not differ substantially
from non-porous tube profiles. For the system under study therefore the axial velocity profiles
may reasonable be approximated as non-porous tube profiles.

The axial velocity profile in a system is determined by the radial momentum transport processes
occurring in that system. Figure 5.3 thus also indicates that radial transport correlations
developed for non-porous tubes may confidently be applied to porous tubes if the radial velocity
component is small,



TABLE 5.2 Velocity Combinations Investigated to Ascertain Whether Axial
Velocity Profiles at Low Radial Flows are Similar to Non-Porous Tube
Profiles
Assumed highest Flux at Tube Wall (J, ) (¢/m2h) 1 000
Assumed Superficial Axial Velocities (U ) (m/s) 1,4 and 2,0
Assumed Cake Thicknesses {¢.) (m) 0,0 and 0,002
Case Permeate Superficial Assumed Permeate Suespension
Velocity at Suspension Cake Velocity at Velocity in
Tube Wall Velocity Thickness | Cake Surface | Free Channel
I';w Us tc Vcs ﬁc
(m/s) (m/s) (m) (m/s) (m/s)
1 2,78E-4 1.4 0,0 2,78E-4 1,4
2 2,78E-4 2,0 0,0 2,78E-4 2,0
3 2,78E-4 1,4 0,002 3,31E-4 1,98
4 2,78E-4 2,0 0,002 3,31E-4 2,83
25
MB: Curves are virtually co-incident and cannot be individually ennotated
20
15
U +
10 -
5 =
(see Table 5.2 for cases investigated)
0 T T T T T
1 3 10 30 100 300 1000
Y +
FIGURE 5.3 Comparison of Axial Velocity Profiles Obtained at Low Radial

Flows, With Non-Porous Tube Profiles
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5.3.2  Applicability of Correlations Developed for Radially-Invariant Viscosity Systems
to CFMF

In most systems employed in fluid dynamics studies, the viscosity is radially invariant. In
CFMF a radial concentration profile exists, the concentration increasing from a relatively low
value in the tube core to a value approaching the maximum packing density of the solids near
the cake surface. Resultantly, the viscosity is expected to show a radial variation, increasing
from a low core value to a value approaching infinity at the cake surface.

It is known that turbulence levels are significantly dampened by the presence of solids
[Hsu et al. (1989), Brodkey (1967)]. It is thus expected that turbulence transport coefficients
in regions of high concentration and viscosity will differ significantly from those obtained in
pure fluids. This will in turn result in a difference between the actual velocity profiles in
CFMF systems and those obtained in systems without a radial concentration gradient, at the
some inlet Reynolds numbers. Accordingly, the effects of the radial concentration gradients
may not be ignored and must be explicitly accounted for.

5.3.3 Summary of Applicability of Current Technology

The effects of radial velocity on radial transport coefficients is seemingly negligible at the
typical radial and axial velocities encountered in this study. Correlations developed for
non-porous tubes may thus be confidently applied to CFMF. The effect of the radial
concentration profile, however, must be taken into account. Thus, correlations developed for
non-porous, uniform concentration systems must be suitably adapted to take into account radial
concentration gradients before being applied to CFMF.

5.4 FORMULATION OF MODEL PARAMETERS

The steady-state is represented by equations 5.7 and 5.11. Typically, the operating variables
U,,P and C, will be specified. The task then resolves to finding the cake thickness at which
equations 5.7 and 5.11 will be simultaneously satisfied. In order to solve the equations, the
following mode! functions are required :

D, - particle diffusivity distribution over the boundary layer (m2/s)
% - radial fluid velocity distribution over the boundary layer (m/s)
C.. - the critical concentration for consolidation {volume fraction)
K - average cake permeability (m?2)

b

boundary layer thickness (m)

D,,V and 6 are to be formulated from current technology. The approach adopted here is

to formulate these functions from correlations developed for pure fluids flowing in non-porous
tubes, based on the bulk viscosity, bulk density and bulk average velocity, and to then adapt
these to CFMF systems by inferring the effects of the radial concentration profile on the
resultant formulations.



5.4.1 Particle Diffusivity Distribution - D

P

Particle diffusion arises from three mechanisms - shear induced hydrodynamic diffusivity,
transport by turbulent bursts and transport by turbulent eddies.

54.1.1 Particle Diffusivity due to Turbulent Bursts and Eddies

(@) Introduction

In a fully turbulent flow field, particle dispersion is effected by the random motion of turbulent
eddies.  Accordingly, the particle diffusivity due to turbulence, D, , is related to the eddy
diffusivity of momentum, ¢ [Soo (1967), Ni (1986)]. In analogy to molecular mass transfer,
an inverse particle Schmidt number may be defined [Im and Chung (1983)] :

. D
s, = X (5.15)
€
where S, = inverse particle Schmidt Number
D, = particle diffusivity due to turbulence (m2/s)
€ = eddy diffusivity of momentum {m2/s)

Formulation of the D, distribution in a fully turbulent flow field thus resolves to ascertaining

the distribution of the momentum diffusivity, € , and the inverse particle Schmidt number S,.

Cleaver and Yates (1986) modelled particle transport due to turbulent bursts by explicitly
considering the action of individual bursts. Each burst would sweep some finite area of a
surface and entrain some small fraction of the particles covering that area. Hence the net
particle entrainment may be determined from the removal efficiency of a single burst, the
statistical distribution of burst frequencies and the statistical distribution of burst sizes.

The alternative approach to modelling bursts adopted here follows from the approach used in
modelling the particle diffusivity in a fully turbulent zone. As noted in Section 3.4.2, numerous
investigations have focussed on developing eddy diffusivity distributions in the near wall region,
including the buffer and sub-layer zones. These studies were motivated by the observation
that the assumption of a zero eddy diffusivity in the sub layer leads to calculated heat and mass
transfer fluxes being lower than that observed experimentally. In general, diffusivity expressions
for the near wall region take the form

€ | .
— = function(¥Y ")

and the exact forms are determined by regression on experimental results.

In view of the current knowledge of the sub-layer, it is obvious that the assumption of purely
viscous transport mechanisms in that region will lead to low calculated fluxes, since transport
in that region is substantially augmented by turbulent bursts. It also follows that the empirical
expressions developed for the eddy diffusivity in that region will implicitly include the



5-17

contribution of turbulent bursts to transport in that region. Inanalogy to the particle diffusivity
due to eddies, the particle diffusivity due to bursts may also be modelled from an inverse
particle Schmidt number and an appropriate momentum diffusivity distribution for the near
wall region.

Modelling of D, due to both bursts and eddies thus resolves to ascertaining the S, and the

€ distribution over the entire flow field.

(b) Inverse Particle Schmidt Number - S,

The inverse particle Schmidt number is determined by the particle size and inertia, characterised
by a particle relaxation time and the characteristics of the underlying fiuid turbulence [Im and
Chung (1983)]. At each point in a turbulence field there exists a spectrum of eddy sizes and
frequencies. If the particle is very small and light it will respond to every velocity fluctuation
and hence the particle diffusivity will approach the momentum diffusivity i.e.

S, - 1 s d =+ 0 : p, 2 p,

Conversely very heavy, dense particles may only respond to the larger eddies, resulting in the
particle diffusivity being substantially lower than the momentum diffusivity i.e.

S. » 0 as d —e ; p, I

Prediction of S, from fluid and particle properties and bulk flow conditions is not at present

feasible. Although this has been the topic of theoretical studies, solution of the equations
requires a detaited knowledge of the underlying turbulence e.g. the Eulerian and Lagrangian
time scales [Soo (1967), Ni (1986}]. Experimental studies of S, include Calabrese and
Middleman (1979), Snyder and Lumley (1971) and Ni (1986). Calabrese and Middleman
investigated the dispersion of immiscible drops of liquid (d, = 600 to 900 pm, p./p, = 0,69
to 1,6) in water flowing in a 50 mm tube. Inferred S. ranged from 0,5 to 0,8. Snyder and
Lumley obtained S values ranging from 0,1 to 0,5. Nij, studying the dispersion of dust particles
in air obtained a radial distribution for S.. At the centreline, S, = 0,6, increasing to = lin
the near wall region.

In terms of current technology therefore, the a priori prediction of S is not possible and S,

will have to remain an adjustable model parameter. In view of the high relative density of
limestone particles ( p,/p.=2,55) it is expected that S, will be small.



(c) Momentum Diffusivity Distribution -

In turbulent flows, the total (laminar and turbulent) shear stress may be related to the gradient
of the time-averaged velocity by :-

T di
= = (v + &) —
P dy
where T = total shear stress (Pa)
p = density (kg/m3)
v = molecular kinematic viscosity (m?)
€ = eddy kinematic viscosity (eddy diffusivity of momentum) (m2/s)
4 = time averaged axial velocity (m/s)
Y = distance from wall (m)

Rearrangement leads to

T € . :
LA (_ . 1) duy (5.16)
Tw Vv ady”

where <, = shear stress at wall (cake surface) (m/s)

In principle therefore € may be obtained from a measured velocity profile and a knowledge
of the shear stress distribution. For example, using Von Karman®s universal velocity profile
(equations 3.44 to 3.46) with equation 5.16 yields the following [Notter and Sleicher (1971)] :

YT o< S € = 0 (5.17)

5 < ¥ < 30 £ - 0,2y -1 (5.18)
v

30 < ¥ £ - 0,4y - 1 (5.19)
v

In practise, the above distributions are inconsistent with those inferred from measured heat
and mass fluxes, especially in the near wall region. The reason for the inapplicability of
equation 5.17 has been addressed in previous sections i.e. the universal velocity profile assumes
that purely viscous transport processes occur in the sub-layer, contrary to current knowledge
of that region. Notter and Sleicher (1971) attribute the failure of equations 5.18 and 5.19 to
the fact that ¢ is a sensitive function of velocity, and even the most rigorous measurements of
velocity show significant scatter, They also note that it would probably be impossible to
determine the € distribution for the near wall region from measurement of velocity profiles
in that region, due to the practical difficulty associated with accurate measurement close to the
wall.
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Consequently, the approach adopted by most workers has been to assume some function form
for ¢, and to evaluate function constants from measured heat and mass fluxes. Strictly, these
studies yield distributions of the eddy diffusivity of heat, €4, and the eddy diffusivity of mass,
€y . However, ¢, may be inferred from €, and €, , as discussed a few paragraphs hence.
Most studies have concentrated on the region ¥ <30 since in most cases of heat and mass
transfer the boundary layer lies in this region. A good review of studies in this regard is
presented by Notter and Sleicher (1971).

For the present purpose distributions of € for both the fully turbulent and the near wall regions
are required. A summary of the better correlations, i.e. those which show a good fit with their
particular experimental data, is presented in Table 5.3

TABLE 5.3 Correlations for Turbulent Diffusivities
Referrence Correlation
Notter and y' < 45
Sleicher
(1971} €n 0,0009(},.)3 (5.20)
v [1+0,0067(y")?"°
Y' > 45 and Y < 0,15
€n .
vl 1,3(0,4Y°r -1) (5.21)
¥° > 0.1S
€ 0,20Re\ f,/8
€. In/8 (5.22)
v cdh,/dr™?
fn = Moedy friction factor
Re = Reynelds Number
h, = velocity defect function
Y = Y/R,
r' = r/R.
Son and ¥* = 0 -
Hanratty
(1967) c .
;"-‘ = 0,00032(Y") (5.23)
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TABLE 5.3 Correlations for Turbulent Diffusivities
(continued)
Referrence Correlation
Hughmark 4.3 < Y < 12
{1971)
€ L. 3
— = 0,00096(Y ) (5.24)
v
12 < ¥ < 35
En .19
= = 0,01550)") (5.295)
de Pinho whole tube
and Fahien
{1981) 1 1 1
—_— = _ =+ —_— (5.26)
€y €ch Eun
. €y
Cu <ey>
<g,> = average diffusivity over tube
- 0.069U R,
€., = diffusivity of heat for core region
- 1.123[1+2.345(7 )10 - (7))
E;m = diffusivity of heat for wall region

0.000137 Re" 7 (1-r")°




TABLE 5.3 Correlations for Turbulent Diffusivities
(continued)
Referrence Correlation
Hsu et al. whole tube
(1989)

. 2 r
e = U 1[0,4(%) +(Ov6_hs)(F)+ha]h9hlo (5.27)

hy = 1.74-0,6705log(Re)+0,0655[log(Re)}*

~
1t

mixing length
}; 2 Y 4
R - -— - -—
C[O.l 1 0.08(1 Rc) 0.06(1 R:) ]

correction for Re<10°

0.12 Re
l+0'}4€'k|)1: 0.0475(m 4)]

it

P
@
1

pog
o
Il

damping factor near wall
e
[I.O—exp(—éév)]

(NB : in Hsu's paper equation 5.27 is stated as follows :

. ’ r
g = U Rcl[o,c}(RL) +(0.6—h3)(E- +hg |Rohio

The units are inconsistent, and it was assumed that the first R, on the right
hand side was a misprint). '
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In order to evaluate € from the correlations in Table 5.3, the relationships between € , €, and
€4 arerequired. This has been investigated by, inter alia, Notter and Sleicher (1971). Typically
the approach was to assume that e=4ke, (or e=key), where k is some constant, hence
calculate a velocity profile from an €,, or €, distribution, and compare the calculated velocity
profile to known profiles.

It was found that, on average :

Y° < 45 (near wall region)

€y = €, = 1,3 € (5.28)
Y 2 45  (core region)
€y = €5 = € (5.29)

Equations 5.28 and 5.29 may thus be used with Table 5.3 to obtain the radial distribution for
¢ . The question arises as to which of the correlations should be used. A comparison between
the various correlations is shown in Figures 5.4(a) (near wall region) and 5.4(b) (rest of tube).

g0
Rs = 46 000
| »
"f:""-‘_
60 - -
€
20
Motter et ol {egns 5.20-5.22)
4 | ——— de Pinho (eqn 5.28)
wesemennseens | Hsy et gl {eqn 5.27)
D T T t T g T i
0 0,02 0,04 0.06 0,08 Q.1 g2 0,14

FIGURE 5.4(A) Comparison of Eddy Diffusivity Correlations
(near wall region)
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_____ de Pinho (eqn 5.26)
———-—— | Hsu et al {eqn 5.27)
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eentraling
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FIGURE 5.4(B) Comparison of Eddy Diffusivity Correlations
(core region)

In the near wall region, the € distributions are similar. In the core, the correlation of Hsu et al.
differs significantly from that of de Pinho and Notter et al. 2.

The significant discrepancy amongst the correlations for ¥ >0, 15is not of major importance

here, since it will be shown that all boundary layers obtained in the model fall well within the
region ¥'<0,15. With regard to which correlation should be used, that of de Pinho
(equation 5.26) is particularly attractive, since it is fairly recent, is based on a wide range of
data and consists of smooth, easily computed equations. Accordingly, equation 5.26 will be
used in the present study.

Theabovee correlations apply to systems of constant viscosity. The effect of radial concentration
profiles on the € distribution will now be addressed.

The presence of solids affects the turbulence level in 2 complex way. A good review of studies
in this regard is presented by Hsu et al. (1989). In general, it is found that solids tend to
dampen the level of turbulence, the dampening increasing as solids concentration and size
increases. This is, in part, due to the dissipation of the fluid turbulence energy to the solids.

2 Note the logarithmic vertical scale in Figure 5.4{B).



Burst activity is also dampened by the presence of solids [Grass (1974)]. Thus the momentum
diffusivity in a region of significant solids concentration will be lower than that obtained in a
pure fluid i.e. '

e = K, (5.30)

where €

.

€

momentum diffusivity in a pure fluid (m?/s)

i}

momentum diffusivity in a concentrated suspension (m?2/s)

Ko concentration attenuation factor {<1)

[l

Pechenkin (1972), from experiments at relatively low concentrations, proposed that :

C
Ky = 1 - (5.31)
Cmax
where C = solids concentration (volume fraction)

C... = maximum packing density of the solids (volume fraction)

Equation 5.31 has been applied by Roco and Balakrishnam (1985), assuming it to be valid for
all concentrations. Hsu et al. (1989) however have expressed the view that the solids dampening
effect is greater than that indicated by equation 5.31.

The dampening of turbulence by the presence of solids has not been sufficiently investigated
to enable quantification of K,. The expected boundary conditions for K, are consistent
with equation 5.31 i.e.

Ko = 1 s cC - 0

Kg = O as cC = C

nmax

In practice, when real suspensions are considered, K, cannot be solely a function of

concentration. In considering 10 % (by volume) concentrations of limestone and bentonite for
example, it is found that the former is fairly fluid while the latter is a thick and viscous. It
is expected therefore that the dampening effect of a bentonite suspension will be substantially
greater than that of limestone, at the same concentrations. It should also be noted that for
most real suspensions, € .y 18 difficult to define. For uniformly sized spheres, the delimitation
between cake and suspension is relatively clear (about 0,6 volume fraction). For bentonite
however, this delimitation is difficult to define, the packing density being a strong function
of compressive pressure. |
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NQting the limits for K,,, and in the light of the points raised in the above paragraph, it is
proposed that :

C n
K. = (1 - - ) (5.32)

where n > 1 and is a property of the suspension, and Cn. is evaluated at a compressive
pressure of 0 Pa {gauge). Equation 5.32 is depicted in Figure 5.5, for various values of .
The proposed functional form should be applicable to most suspensions. For example K, for
a suspension where significant dampening is expected at low concentrations could be represented
by n=5, while K, for a suspension where less dampening is expected could be represented
byn=2.

1.0
[
O
=
L)
o 0.8
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©
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c % )
L v 5
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< 0.4 -
3
©
o 4
S 5
5 0.2
O
L -
3
I_
0 T T I 1 I
0 0.2 0,4 0,6 0.8 1,0
C/Cmox
FIGURE 5.5 Effect of Turbulence Attenuation Parameter on Turbulence
Attenuation Function

The attenuation parameter, 2, is an adjustable mode! parameter.



(d) Summary Of Particle Diffusivity due to Turbulence Effects

The particle diffusivity due to bursts and eddies is given by :

. c n
max
where S, = inverse particle Schmidt number (adjustable parameter)
n = turbulence attenuation parameter (adjustable parameter)
€ = momentum diffusivity distribution
(obtained from a suitable "pure fluid" correlation)
C = concentration (volume fraction)
C ... = maximum packing density (volume fraction)

54.1.2 Shear Induced Hydrodynamic Diffusivity

The only significant studies of shear induced diffusion are those of Ekstein (1977) and Leighton
and Acrivos (1987a, 1987b). As noted in Chapter 3, Leighton identified a limitation in the
experimental apparatus of Ekstein and hence discussions here will be limited to the works of
Leighton and Acrivos.

The correlation of Leighton and Acrivos (presented in Chapter 3, and repeated here for
convenience) is :

_ R 2
D,, = D vy rj (5.34)
with

N 1

b = 0,33(,‘2(1 + 59”6) (5.35)
where D, = shear-induced hydrodynamic diffusivity of particles {(m2/s)

D = non-dimensional diffusivity

v = shear rate (s-1)

r, = particle radius {m)

C = solids concentration (volume fraction)
The above correlation is a result of two separate studies. In the first [Leighton and

Acrivos (1987a)], the diffusivity of particles in a shear field, in the presence of a concentration
gradient, was measured. Hence the measured diffusivity included the effects of both random
and non-random drift components. Volume fractions investigated ranged from 0,4 to 0,5 and
particle sizes from 46 uh to 87 pm . The second study concerned the measurement of particle
diffusivity in a uniform concentration field [Leighton and Acrivos (1987b)]. Here the measured
diffusivity only reflects the effects of random drift (i.e. self diffusion). Two particle sizes
were used, 645 pm and 389 pm , shear rates ranged from 1,55 s~! to 65 s~! and the volume
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fraction range investigated was 0 to 0,4. Equation 5.35 is a combination of the shear induced
diffusivity measured at the high concentrations and the self diffusivity measured at the low
concentrations.

Leighton and Acrivos (1986) note that since the shear induced diffusivity may be up to five
times greater than the self diffusivity, equation 5.35 would probably underestimate the shear
induced diffusivity at low concentrations. It should also be noted that although equation 5.35
indicates that the non-dimensional diffusivity, D, is independent of v and r,, a significant
scatter exists in the data.

Equation 5.35 requires adaptation before it may be applied to the system used in the present
study. The particles used in Leighton’s studies were spherical and of relatively uniform size,
in contrast to the highly irregular, angular limestone particles used in the present study. On
the assumption that the shear induced diffusivity of angular particles may differ from that of
spherical particles, it is proposed that :

b = K, D : (5.36)
where 0 = non-dimensional diffusivity for spherical particles (equation 5.35)

D* = non-dimensional diffusivity for angular particles

K, <1

Evaluation of the diffusivity from equation 5.34 requires the specification of the shear rate,
v . This may of course be obtained by differentiation of the velocity profile in the wall region.
As explained in Section 5.3, however, the attenuation of turbulence by the solids will result in
the velocity profile in a CFMF system differing from that obtained with a pure fluid. The
qualitative effect that turbulence dampening will have on the shear rate may be inferred from
Figure 5.6.

Curve | depicts a typical "pure fluid" turbulent velocity profile. Curve 2 is the well known
parabolic velocity profile for laminar flow, and thus represents the velocity profile for total
dampening of turbulence. The dampening of turbulence due to high concentrations in the
near wall region will thus tend to shift the velocity profile from Curve 1 towards Curve 2 e.g.
Curve 3. This will result in an increase in the shear rate over most of the core, but in the
region of the wall the shear rate must decrease. The shear rate in the wall region may thus
be represented by :

=

Yy = Kpy ' ) (5.37)

where v

Y actual shear rate in a system with a radial concentration profile
K, <1

shear rate calculated from a pure fluid velocity profile
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FIGURE 5.6 Qualitative Effect of Radial Concentration Profile on Shear Rate
' at Wall
Combining 5.34 to 5.37 yields :
A 2
D,, = Kgo v D 1} (S5.38)
with v = shear rate calculated for a pure fluid
K.. = shear diffusivity parameter
= KK,
< ]
D = non-dimensional diffusivity (equation 5.35)

The shear induced hydrodynamic diffusivity in a CFMF system may thus be modelled as
equation 5.38, with K, being an adjustable model parameter.

In view of the fact that equation 5.35 underestimates the diffusivity at low concentrations, and
noting its exponential form, it is highly feasible that the equation may drastically overestimate
the diffusivity at concentrations greater than 0,5. This may have significant implications for
the current modelling effort, where concentrations of up to 0,6 will be encountered. It should
also be noted that the shear rates encountered in the sub-layer of a turbulent flow (of the order
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of 10 000 s-!) are orders of magnitude greater than the shear rates used in the studies of
Leighton and of Ekstein. At present, however, there are no a priori indications as to whether
equations 5.34 and 5.35 are applicable to the system under study. By default they will be
applied and their applicability judged in terms of whether the final solutions seem realistic.

54173 Effective Particle Diffusivity

It is expected that the shear induced dif'fusivity will predominate in the sub-layer while the
diffusivity due to eddies will dominate in the outer regions. In the buffer region both
diffusivities are expected to be significant.

It is proposed that the diffusivity over the whole flow field wili be given by the algebraic sum
of the turbulent and shear induced diffusivities 1.e. :

b, = D, + D

P bt

(5.39)

ps

with D particle diffusivity due to turbulence {equation 5.33)

pt

D

s shear induced hydrodynamic diffusion {equation 5.38)

5.4.2 Radial fluid velocity distribution - 17

Noting the absence of empirical correlations for the radial velocity profile, the most rigorous
option to obtain ¥ would be the solution of one of the models menticoned in Section 5.3.1 e.g.
Kinney and Sparrow (1970). In view of the complexity of those models, however, an alternative
approximate method may be employed, based on the evaluation of IV from the fluid continuity
equation,

The continuity equation for fluid flow in a porous tube is :-

2 ol/
l —(rv) + — = 0 (5.40)
r or 8z
Rearrangement leads to :-
1 ool
(r)y = - f(r-—)dr (5.41)
r 0 oz

where V(r) = radial fluid velocity at radius r.

Thus, the radial velocity distribution ¥ may be obtained from equation 5.41 if the radial
distribution of the axial velocity gradient (8U//9z} is known.
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A global mass balance over a differential length, Az, of porous tube yields (Figure 5.7) :-

— 2Az
U

Uci = c2 * Vcs (5'42)
Re.
where U, = bulk average velocity in core (m/s) (1=in, 2=out)
Vs = radial velocity at the wall (cake surface) (m/s)
R, = core radius (m)
Az
U —= 2R, ey
U _ € o 2
(coke su._:rrc\:v:cel)l / v
cSs
FIGURE 5.7 Fluid Mass Balance across a Porous Tube

By specifying U.,, R,, ', and AZ, I/, may be obtained from equation 5.42. The axial

velocity profiles, U ,(r) and U,(r) may then be calculated from U, , U,, and a suitable
correlation for turbulent flow velocity profiles e.g. the universal velocity profile.

These axial velocity profiles may then be substituted into a finite difference analogue of
(U 7az) i.e.

oU Ury(ry - U,(r)

= 2.43
oz " 2Az ( )

where (8l /2z)|,
U|,U2

axial velocity gradient at radius r

inlet and outlet velocities at radius r

yielding the radial distribution of (8¥//8z). Equation 5.41 may then be integrated to vield

the radial fluid velocity distribution ¥ as a function of U/, , R., V. and fluid physical
properties.

A typical profile calculated by the above procedure, and using Von Karman's universal velocity
profile, is compared to a profile from Kinney and Sparrow (1970) in Figure 5.8.
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FIGURE 5.8 Comparison of Calculated Radial Velocity Profile with that of
Kinney and Sparrow (1970)

The profiles are substantially similar, validating the above procedure as a method? to obtain
v ,

Consistent with experimental profiles from Hirata et al. (1982a), IV shows a moderate deviation
from the profile that would be obtained for a plug flow axial velocity profile i.e.

V ¥
—_— = 1 - — (5.44)
V cs R [
and approaches the expected profile for a constant radial flowrate i.e.
V Y
= ] + — S5.45
V CS R c ( )

in the near wall region.

It was found that calculated V /V ., profiles were insensitive to V., and negligibly sensitive

to U, , at the typical velocities encountered in the present study. Further, the calculated
distribution was insensitive to the value chosen for Az, providing that the value chosen was
not too large.

3 Strictly, the universal velocity profile will only be valid for low wall velocities (see Section 5.3.1).



The V' profiles calculated by the above procedure are "pure fluid" profiles i.e. the effect of
the radial concentration profile is not taken into account. The qualitative effect of the radial
concentration profile is depicted in Figure 5.9, Curve |1 represents the (V/V ) profile for a
highly turbulent system i.e. where the axial velocity profile approaches plug fiow. Curve 2
is the expected profile for a parabolic axial velocity profile (laminar flow). The existence of
the radial concentration profile will thus cause curve 1 to shift towards curve 2 i.e. curve 3.

1.2
1.0 75
T 2
s 3
0.8 e S
v/ 0.6 “\..\
s S~
0,4 \*\
{ | expected prefile for turbulent flow Iy
02 2 | expected profita for taminar fow \"\_‘
’ expected profile for turbulent flow \“\.\
4| 3 |in system with rodial concentration i}
profile b
¢ T T 7 T
] 0.2 D4 0,6 0.8 1.0
walt centreline
FIGURE 5.9 Qualitative Effect of Radial Concentration Profile on Radial
Velocity Profile

Quantitatively, the effect of the radial concentration profile is not expected to be substantial.
Quantities like the shear rate, v, are functions of the radial gradient of the axial velocity profile
i.e. (U /or). This radial gradient is substantially affected by the concentration profile in the
near wall region, and hence the effects of concentration had to be explicitly taken into account
(see equation 5.37). IV, however, is a function of the axial gradient of the axial velocity profile
i.e. (aU/9z), which is not expected to be a strong function of the radial concentration profile.
The insensitivity of IV to concentration effects may also be inferred from Figure 5.9. Even
if curve 1 was substantially shifted towards the laminar flow curve (curve 2) the difference in
point values for V' in the near wall region will be small. Accordingly, it will be assumed that
the effects of the radial concentration profile may be ignored and the V' profile in CFMF
system may reasonably be approximated as a "pure fluid" profile.

Note, once again, that when implementing the above procedures in CFMF systems, velocities
based on the core radius, i.e. ¥, and U/, , are used in place of velocities based on the tube
radius, i.e. V, and U,.
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5.4.3 Boundary Concentrations - C.,, and C,.,

Following the discussions in Chapter 3, C... is the limiting cake concentration as the solids

compressive pressure, P,, approaches 0 Pa. Thus C,,, is a property of the suspension and
may be evaluated experimentally.

Compression-permeability (CP) cell tests on the limestone used in this study indicated that
Coax = 0,6 (volume fraction) as P, » 0O

C.u Is that concentration at which a suspension ceases flowing and consolidates into cake.

This concentration is not necessarily equal to C,... In considering uniformly sized spheres,
fpr example, C.,. would probably correspond to the body-centre-cubic or hexagonal packed
state (volume fraction = 0,74), but the lowest concentration that may be regarded as cake is the
cubic packed state (volume fraction = 0,52). In this instance it is feasible that C., will be
achieved at a concentration of = 0,52, whereafter the particles will rearrange themselves to
achieve a C,,, approaching 0,74,

For the present, since information on the packing states of limestone is not available, and noting
that the objective is to model the system from experimentally determined guantities and current
technology, it will simply be assumed that ;-

Ccrit = Cmax = 0'6 (546)

5.4.4 Cake Permeability - K

The cake permeability is, fundamentally, a property of the suspension particles and a function
of the compressive pressure [Tiller and Yeh (1987)]. Due to preferential deposition effects and
the variation of solids compressive pressure through the cake, the permeability is also expected
to be a function of cross-flow velocity and distance through the cake. These latter effects
were discussed qualitatively in Chapter 4. The study of Baker et al. (1985) provides a
quantitative indication of the effect of preferential particle deposition on the permeability (or
conversely on the specific cake resistance, a). For the mineral suspension used in their
experiments, the ratio (@, pe- r10u’ X geaa-ena ) FaNged from 2 to 3,3 over the pressure range 60 kPa
to 160 kPa.

Standard experimental techniques to evaluate K generally involve some form of dead-ended
filtration test e.g. compression-permeability (CP) cell. Baker's results, and the findings in
Chapter 4, indicate that dead-end tests are most likely to overestimate the permeability of cakes
formed under cross-flow conditions. However, noting that the aim is to evaluate model functions
from experimentally measured quantities and current technology, and noting that no simple
test exists to evaluate X under cross-flow conditions, dead-end filtration tests remain the easiest
method to obtain an estimate for K. Note that the results of Baker et al. (1985) indicate, at
the very least, that the order of magnitude for K is the same under dead-end conditions.
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Accordingly, it will be assumed that the effects of preferential particle deposition and radial
compressive pressure profiles on cake permeability are second order effects and may be neglected.
Thus the cake permeability may be represented by an average value which is solely a function
of the operating pressure and may be estimated from dead-end filtration tests.

CP cell tests on the limestone used in this study indicated that over the range

101 kPa < P, < 303 kPa

the permeability could be represented by :

P -0,1661
K = 2,6889( ‘) (5.47)
101
where P, = compressive pressure {(kPa)

The above permeability function will be used in the model. Errors arising from the use of this
(most definitely) over-estimated permeability will have to be "absorbed” in the adjustable model
parameters.

5.4.5 Concentration Boundary Layer Thickness - (5)

The basic assumption in a boundary layer approach is that the concentration field may be
roughly divided into two regions - the core where concentration gradients are negligible and
the concentration is approximately equal to the bulk value, and the boundary layer where most
of the concentration gradient occurs. Accordingly, analysis of the system is greatly simplified
by restricting considerations to this thin boundary layer. Note that in terms of this assumption
a system whose concentration profile is as in Curve 1 of Figure 5.10 lends itself to a boundary
layer approach while a system with a concentration profile as in Curve 2 does not.

¢entreling

r/R.

boundary
layer

wall T T .
bulk wall -

Concentration

FIGURE 5.10 Concentration Profiles Ilustrating Validity of a Boundary Layer
' Analysis




One approach to the concentration boundary layer thickness, (8) , isto relate § to the momentum
boundary layer thickness 6, [Bird et al. 1960)] i.e.

) -1

= = (S ° : (5.48)
where 6 = concentration boundary layer thickness (m)

§, = momentum boundary layer thickness (m)

S, = Molecular Schmidt number

This approach cannot, unfortunately, be directly applied to CFMF. Firstly, in fully developed
pipe flow the momentum boundary layer theoretically extends to the tube centreline. Thus,
a boundary layer as defined above no longer exists. Equation 5.48 therefore is strictly applicable
to developing or unbounded flows only. It is of course feasible to arbitrarily define &, as the
point were U/ = 0,99 U ., {for example). This approach could yield success in highly turbulent
systems, where the velocity profile\is flat over most of the tube cross-section. For the typical
axial velocities encountered in this study, however, the velocity profiles are similar to curve |
in Figure 5.6, and 0,990 ., once again approaches the tube centreline.

The second problem concerns the Schmidt number, S.. Although the particle diffusivity due

to bursts and eddies is related to the momentum diffusivity, the shear induced diffusivity cannot
be simply related to the momentum diffusivity. Thus, even if 6, can be evaluated, the
specification of S, is problematic.

An alternative approach is to formulate an expression for & based on the properties that & is
expected to-exhibit. These expected properties are :

(i) as velocity increases, 6 decreases - (at higher velocities greater mixing in the core
results in an increased core region of uniform concentration, and hence a thinner
boundary layer).

(i1) As viscosity increases, 6 increases - (at higher viscosities, reduced turbulence levels
result in a decreased core region of uniform concentration).
These properties will be exhibited if the boundary layer thickness is expressed in terms of the

non-dimensional distance co-ordinate in turbulent flows, ¥~ (see equation 3.43). Hence,
following Flemmer et al. {1982} and Hunt et al. (1987b), it is proposed that :

5 = K, (;) | (5.49)

where K, = boundary layer parameter
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Ky will be evaluated by computational experiments. The factors that will govern the choice

for K4 are :

(i)

(ii)

Particle size :- & must be substantially greater than the particle diameter in order to
be physically realistic.

Calculated concentration profiles :- assume that for some K, the calculated

concentration profile over the boundary layer is Curve 1 of Figure 5.11. By implication,
the profile over the tube will be as in Curve 2 of Figure 5.11. In this instance, the
profile is consistent with Curve 1 of Figure 5.10, and hence K, is acceptable.
Conversely, if the calculation concentration profile over the boundary layer is given
by Curve 3 of Figure 5.11, the implied profile over the tube is Curve 4. Curve 4 is
not realistic since an obvious discontinuity exists at point A. In this instance, the
assumed value for K, is too low. Thus the validity of the choice for X, may be assessed
by observing whether t\lle concentration in the boundary layer smoothly approaches the
bulk concentration before the edge of the boundary layer.

FIGURE 5.11 Concentration Profiles Illustrating Validity of Assumed Boundary

centreline cenireline
predicted i implied predicted i | imptied
concentrotion | 1 concentration concentration concentration
profile over i | profile over profile over i | profile aver
boundary i 1 channel boundary channel
tayer layer H

discontinuity

wall wall

boundary layer 1 boundary layer 2

Layer Thickness

4

This will be elaborated on in Section 5.8.
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5.4.6 Miscellaneous

The equipment and operating variables that will be specified as inputs to the model are:

U, - bulk average superficial inlet velocity (m/s)
C: - bulk concentration (g/%)

P - operating pressure (Pa)

T - temperature ( °C)

R - tube radius (m)

The cake thickness is then iterated until the steady-state equations are solved. For a specified
cake thickness, ¢, the various quantities required for the calculation of model functions are
obtained as follows:

5.4.6.1 Core Radius

R, = R-t, (m)

5.4.6.2 Axial Velocity in Core

— _{ RY?
v, = US(E) (m/s)

5463 Permeate Velocities

Ve = aP &K = (m/s) (from S.11)

L, R ln(ﬁ:)

Ve = Vo (Rﬁ) (m/s)

54.6.4 Fluid Density [from Hunt (19872a)]

p, = (999,83952+16,94‘5176T~7.987O41xlO'3T2 (5.50)
- 46,170461%x107%7T%+105,563x107°T*
-280,542X1072T%) / (1,0+16,879%x107°T)

with p, in kg/m3
T in °C



5.4.6.5

with

' 5.4.6.6

where

5.4.60.7

where

5.4.6.8

Fiuid Viscosity {from Hunt (1987a)]
1.002 x lol.3272(20T)—0.001053(T—20)2
He = 0,01(T+105,0)
o in Pa.s
T in °C
Suspension Concentration ({volume fraction)
C‘l
C, = —
Ps
Cs = suspension concentration (volume f:jaction)
Cy = suspension concentration (g/4)
P = particle density
= 2 550 kg/m3 (from Appendix I)
Suspension Concentration (mass fraction)
C. = Ceg
B . 1000
ca(1-52)+ 1000
C, ~ = suspension concentration (mass fraction)
Suspension_Denfsity
. - -1
C 1-C
p = (—“’+——( “)) (kg/m®)
p s p I
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(5.51)

(5.52)

(5.53)

(5.54)



5469 Suspension Viscosity [from Wasp et al. (1977)]

L= pn( 1,0 + 2,5C, + 10,05C3

+ 0,0027exp[16,6C,] )

5.4.6.10 Suspension Kinematic Viscosity

v o= = (m?/s)

3.4.6.11 Turbulence Variables

(i) 20 U. R,
Re = < ¢
ft

) 4. = 0,079(Re)""*

L’CS
1,0+115,8=
7o ( U)

e
It

C

(For the low radial velocities encountered in the present study, = £, )

N T

Fop Ul

g
N

<

s U™ = U, {f/2 (m/s)
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(5.55)

(5.14)

(5.56)



5.4.7

54.7.1

54.73.2

(i1)

(iii)
(1v)
(v)
5.4.7.3
(i)

(ii)
(iii)
(iv)

5.5
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Summary of Medel

Steady-State Equations

R
€ V Ccrlt
— dr = ] S.7
fgc—a D, ! ( Cp ) )
W,V R R
AP = :
- ln(R_tc) (5.11)

Model functions

b = boundary layer thickness

= K, (v/U")
Cera = critical concentration for consolidation

= 0,6
K = cake permeability (equation 5.47)
| = radial fluid velocity distribution (equation 5.41)
D, = particle diffusivity distribution {(equation 5.39)

Model parameters

5. = inverse particle Schmidt number {equation 5.15)
Ko = shear diffusivity parameter (equation 5.38)
n = turbulence attenuation parameter (equation 5.32)
K, = boundary layer parameter (equation 5.49)

NUMERICAL SOLUTION PROCEDURE

The objective is to determine the steady-state cake thickness (¢{.), and hence the steady-state

flux, for specified superficial inlet velocity (I/,) , operating pressure (P) and bulk concentration

(Ce).

The overall iteration scheme is presented as Algorithm I in Figure 5.12 (highly simplified) :
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BEGIN )
!

NPUTS
U.,.P,Cg

:

Assume i,

[ sTeP 1]

STEP 2

Calcutate < w cs

[sTEF 3 R.-5
Evaluate / v

Z QUTPUT
V W /

( END )

FIGURE 5.12 Algorithm I - Overall Iteration Scheme (simplified)

The radial velocity distribution, V', in step 3 may be directly evaluated using the procedure in
Section 5.4.2. The diffusivity distribution, D, , however is a function of the concentration
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profile, ¢ , in the boundary layer (see equations 5.33 and 5.35). The concentration profile
will, in turn, be determined by IV and D,. Thus step 3 requires a procedure that will yield
simultaneous solutions of the mutually dependent distributions of O, and C .

For this, equation 5.3 (repeated here for convenience) may be employed ;

2 (rvey = 12 (rD ac) (5.3)
or

|

ror Par
The finite difference analogue of equation 5.3 is:

Tl + T2 + T3 - T.q,

C(i) = S.57
(i) o ( )
where
T, = D;E” [CCi+1) + C(i-1)]
1
T, = VY [D,(i+1) - D, (i-1)] [C(i+1) - C(i-1)]
D (i
ry = 220 [casny - ci-1))
r, = S8 e - cu- 1)
V(i+1) - V(-1) V(i) D,(i)
Ts = 2B 2
with i = any INTERIOR mesh point
B = mesh spacing
r = radial distance from tube centreline,

The appropriate boundary conditions for equation 5.57 are :
r = RC i = N C(N) = Ccri!
R.—b i = 1 C(l) = Cy4

r

For specified ¥ and D, distributions, therefore, equation 5.57 may be solved by a point

relaxation procedure,'subject to the specified boundary conditions, to yield the concentration
profile in the boundary layer, C.

In the present instance, however, the diffusivity distribution is not known, since it is a function
of the concentration profile. Thus, a nested point retaxation procedure must be employed, to
obtain simultaneous solutions for D, and C. The algorithm for this nested procedure is
presented in Figure 5.13 (a) and 5.13 (b).
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FIGURE 5.13(a)

( BEGIN )

INPUTS —
RC VCS 6 UC
STEP i

Divide boundoary layer into (N+1)} mesh points
spaced distance (B} apart.

Mesh point {(i=1) is the edge of the boundaory
layer, and {i=N) is the cake surfece.

STEP i I
Calculate FLUID VELOCITY distribubion

v(iy  i=1.N
{ezuciion 5.41)

STEP i I

Set boundary conditions for Conceniration
c(1) = Cg
C(N) = C

STEP v l

Assume starting values for C{i), 1 <i <N

l

STEP v
Calculate initial diffusivity distribution,
D (i) i=T.N

(equction 5.39)

!

®

Algorithm IT - Nested Iteration Procedure to Obtain
Simultaneous Solutions for Concentration and Diffusivity

(used as Step 3 of Algorithm I)
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.........

STEP vi I

C(i) 1

Recalculate conceniration

<1 < N

{equation 5.57)

C(i) changed

STEP vii

D, (i) i=1,N

Recalculate diffusivity distribution

(equation 5.39)

Yes

D, (i) changed

SOLUTIOH

Simultanaous solutions for

Dpond C

1

( RETURN )

FIGURE 5.13(b)

Algorithm II (continued)

It will probably be noted that Step (ii} of Algorithm II is seemingly inconsistent with'equation 5.3.
IV in equation 5.3 refers to the suspension velocity distribution whereas 1V in Algorithm II has

been specified as the fluid velocity distribution.
equivalent when the net solids flowrate is zero.

The fluid and suspension velocities are only
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The net solids flowrate may simply be calculated from the output of Algorithm II and equation 5.4
1e.

Q, = rivC - erg-E (5.4)
ar

In general, the output from the Algorithm II will not yvield a zero net solids flowrate. In those
instances the algorithm is inconsistent with equation 5.3 and the algorithm output is physically
meaningless. When Algorithm II is substituted into Step 3 of Algorithm I, ¢, is iterated until
J(V/D,)=1n(C.../C;), i.e. until the net solids velocity is zero. At this solution point, therefore,
the fluid and suspension velocity distributions are equal, and Algorithm II is consistent with
equation 5.3. Thus the general solution to Algorithm II may not be consistent with equation 5.3,
but the specific solution obtained when Algorithm II is coupled with Algorithm I is consistent
with equation 5.3. '

The above algorithms were coded into Fortran and implemented on the Computing Centre for
Water Research (CCWR) mainframe computer. The values used for model parameters will be
discussed in the next Section. Computations were initiated by specifying an initial concentration
profile (Step iii, Algorithm II) of the form

r— R] m
C(r)y = | | (CyuCp)+Cy (5.58)
Rc" Rl
where C({r) = concentration ar radius r
R, =R.-5
m = profile parameter

Note that m = 1 yields a linear initial concentration profile, m = 2 yields a quadratic profile etc.

The final solutions were insensitive to the starting profiles used. In general, m=3, i.e. a cubic
initial profile, seemed to reduce the number of iterations needed for convergence.

Computational stability was controlled by using appropriate relaxation factors e.g. in Steps (vi)
and (vii) of Algorithm II,

C(H™ = c@) + RF(CW-C))
Dp()"" = D) + RF(D (' -D (1))
where RF,.RF, = fe_laxation factors

j symbolises the jth iteration

In general, computations were still stable if C(i) was over-relaxed (RF,=1,5). In initial
iterations, D, needs to be under-relaxed (RF,=0,4), but RF ,could safely be increased to 0,8
as the solution was approached.
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In Algorithm II, convergence was assumed, when at all mesh points,

Di*l __Di
(‘”—,—") < 1,0E-5
DP
Ci*'l _Ci

Investigations indicated that decreasing the convergence criterion from the above value produced
no change in the final solution.-

Algorithm 1 was assumed to have converged when

Jwipy - mccarcs
0(Cou/Ca)

< 0,01

The influence of mesh spacing was also tested, by progressively increasing the number of mesh
points and comparing the predicted fluxes. Increasing the number of mesh points from 151 to
251 produced negligible change in the predicted flux, and all computations were subsequently
performed with 151 mesh points.

5.6 QUANTIFICATION OF MODEL PARAMETERS
5.6.1 Introduction

Computational investigations indicated that the boundary layer constant, K,, was not

significantly dependa‘nt on the diffusivity parameters (n, S, and K,, ) and vice versa. This
enabled K, and the diffusivity parameters to be quantified independently.

5.6.2 Diffusivity Parameters (n, S., K1)

Initially an attempt was made to quantify the optimal n, S.. K, combination by regression on

the entire experimental dataset. It was found that a wide range of S., K, combinations yielded
an equivalently good fit between predicted and observed fluxes. This prompted an attempt
at "manual" regression in order to better understand the interactions amongst the parameters.
This exercise, in turn, indicated the interesting result that n,S..K,, could reasonably be
estimated from a single experimental datapoint (i.e. a single steady-state flux measured at a
known velocity, pressure and concentration). The manual regression procedure leading to this
surprising observation is detailed below. -
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The dataset obtained in the experimental study is summarised in Table 5.4. It consists of three
subsets, depicting the effects of velocity, concentration and pressure on the steady-state flux.

It is seen that datapoint 3 is the central datapoint in all subsets.

TABLE 5.4 Summary of Experimental Dataset
Databoint Run Number | Superficial |Concentration Pressure Flux
Inlet Velocity )
) (29 (P) (V)
i (m/s) (g/8) (kPa) (¢/mZh)
(a)  Effect of Velocity on Flux
1 55 0,85 39,4 200 499
2 53 1,13 39,4 200 563
3 48 1,42 39,4 200 638
4 52 1,7 39,4 200 722
5 54 1,98 39,4 200 802
(b) Effect of Concentration on Flux
6 50 1,42 9,9 200 886
7 47 1,42 19,8 200 749
3 48 1,42 39,4 200 638
-8 49 1,42 58,6 200 574
9 51 1,42 77,6 200 530
{c) Effect of Pressure on Flux
10 59 1,42 39,4 100 502
11 60 1,42 39,4 150 574
3 48 1,42 394 200 638
12 61 - 1,42 394 250 672
13 58 1,42 394 300 _ 687
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For each datapoint, and for a specified K, , there exists innumerable combinations of n, S,

K ,» that will yield an exact match between the predicted and observed flux for that datapoint.
These constitute a parameter solution surface for that datapoint. A two-dimensional
representation of a typical parameter solution surface is shown in Figure 5.14. Every point
on every curve represents an n, K,,.S, combination that will result in an exact match between
the predicted and observed flux for the particular datapoint. The curves were generated using
the algorithm in Figure 5.15 (overleaf).
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@
> 0,005 —
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Shear Diffusivity Porameter, K g
FIGURE 5.14 Two-Dimensional Representation of a Typical Solution Surface

It is seen that S, and K., are highly correlated at low K,, , but S. becomes progressively less
dependent on K,, as K., increases. It is also clear that the solution curves become less
dependant on n as nis increased. The significance of this will be addressed shortly.

The parameter solution surface for each datapoint will, in general, be unique and differ markedly
from those of the other datapoints. Ideally, the solution surfaces for all datapoints should
intersect at a single point, which then defines the optimal n. S.. K,, combination. In general,
however, the solution surfaces will not intersect at a point. The task then resolves to finding
the parameter combination that is "closest” to all surfaces i.e. that which results in the minimum
error between predictions and observations.
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Algorithm III - Algorithm to Generate Solution Surface
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Manipulation of three-dimensional surfaces is not a trivial exercise. However, investigations
indicated that the solution surface is not very sensitive to n. This is typically illustrated in
Figure 5.14, where it is seen that the S., K,, solution curve is not very sensitive to n over
the range n=2,5 ton=5. Similar trends were observed for the solution surfaces for other
datapoints. This observation enabled n to be assigned a fixed value, thereby reducing the
number of manipulatable parameters to two and hence reducing each solution surface to a
parameter solution curve. From Figure 5.14, therefore,

n = 3,5 | (5.59)

It will be shown in Section 5.7.3 that the predicted fluxes are indeed insensitive to n.

It should be noted that although each point on a given S.,K,, solution curve will yield the
correct predicted flux for the datapoint, every point does not necessarily yield a realistic
concentration profile. This is depicted in Figure 5.16, where concentration profiles predicted
at different S_. K,, combinations are presented. At low K, , all the concentration gradient
is confined to an extremely thin region next to the cake. The thickness of this region is the
same order of magnitude as the particle diameter. Thus, the solution predicted at low values
of K,, is not physically realistic. At moderate and high &,, the thickness of the concentrated
region is orders of magnitude greater than the particle size, indicating a physically feasible
solution.

400 ——

Predictions for Datgpoint J Curve Ksh
with ; n=235
Kg = 150

0,2

{microns)

Distance from cake surface

o ] ] T I T
0 /J 0.1 0.2 0.3 0.4 05 0.6
ﬁfg‘;‘c'g,;) Concentration {volume fraction)

FIGURE 5.16 Ilustration of Realistic and Unrealistic ConcentrationmProfiles
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Having fixed n the task then resolves to graphing the S, K,, solution curves for all datapoints

and finding the S_, K, closest to all curves. The solution curves for all datapoints, forn=3,5,
are presented in Figure 5.17,

2,08
All solution curves calculated for n = 3,5 and Kg= 150
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Shear Diffusivity Parameter, K gy
FIGURE 5.17 Solution Curves for all Datapoints

At low K, the curves are substantially dissimilar, As K, increases most curves converge

and thereafter become similar for K,,>0.6. The most significant feature of Figure 5.17 is
that the curves do not intersect in a discrete region, but are substantially the same over a wide
K., range. This indicates that a wide range of optimal S., K,, combinations will exist. The
second significance of Figure 5.17 is that, noting the coincidence of the solution curves at
moderate to high X ,, , the optimal-values for S,, K,, may be inferred from any single curve.
The curve for datapoint 3 is particularly attractive since datapoint 3 is the central point in each
experimental subset (see Table 5.4) and the solution curve for datapoint 3 falls approximately
in the middle of the family of solution curves. Using the solution curve for datapoint 3 will
also enable a more rigorous evaluation of the model since parameters evaluated for a median
velocity, concentration and pressure will then be applied to extreme concentrations, velocities
and pressures. '
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It cannot be determined e priori which of the S;.K,, combinations from the range X, > 0,6

should_be used. The concentration profiles for all S;,K,, combination in this range are
expected to be realistic (see e.g. Figure 5.16). Accordingly, the model will be tested at various
S..K,, combinations in the range K,, > 0,6, using parameter combinations obtained from the
solution curve for datapoint 3.

5.6.3 Boundary Laver Parameter (K;)

Computational experiments were performed, involving changing the boundary layer thickness,
solving the model and comparing the resultant model outputs. This was done for various
"solution combinations" of the other model parameters, as obtained in Section 5.6.2.

These experiments indicated that K, was insensitive to the other model parameters and also

indicated that the predicted steady-state flux and concentration profile was not very sensitive
to the boundary layer thickness, provide that 8 is greater than some minimum boundary layer
thickness. This is typically illustrated in Figures 5.18 and 5.19, where predicted fluxes and
concentration profiles for one experimental datapoint are shown as a function of K, .

300
| Pfedr.ctuons for Datapeint 3 K 5 Predicted &
' with : n = 33 {microns
250 S, = 0.009 75 181
Ksh = 0.7 50 350
E 75 514
200 — 199 o
125 B34
| 150 §94
175 1150
200 1310

} increasing Kg

g
1

Distance from cake surface
(microns)
s
(=]
1

/

1 INE - Curves cannot be individually onnotoled due to their similarity.

The respeclive boundary layer constants are listed above.

0 T T T T T
o} o 0.2 0.3 Q.4 0,5 .6

50 -

Concentration (volume fraction)

FIGURE S.18 Effect of Boundary Layer Parameter on Concentration Profiles

It is seen that for K, greater than some {not very well defined) minimum Vvalue, both the
predicted flux and the concentration profile are almost independent of Ks. The insensitivity
of the model to K, will be explained in Section 5.7.3.
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FIGURE 5.19 Effect of Boundary Layer Parameter on Predicted Flux

For all results presented here, it was found that a boundary layer thickness of 150(v/U") was
sufficient to fulfil the criteria specified in Section 5.4.5. Hence,

K, = 150 (5.60)

5.6.4 Summary of Model Parameters

(a) Examination of the parameter solution surfaces indicates that the solution is not very
sensitive to n, over a reasonable range of n. Hence, from Figure 5.14,

n = 3,9

(b) Examination of the S_, K., solution curves indicate that a wide range of optimal S.. K

combinations possibly exists, and that these could reasonably be quantified from the
solution curve for a single datapoint. The S_, K,, combinations to be tested will be
obtained from the solution curve for datapoint 3, from the range K,,>0,6.

(c) Computational investigations indicate that the model is relatively insensitive to K.

From computational experiments,

K, = 150

Note that, in retrospect, the values of all the parameters could have been obtained solely from
computational experiments on datapoint 3.



5.7 RESULTS AND DISCUSSION

5.7.1 Comparison_Between Model Prediction and Experimental Observations

Model predictions for steady-state fluxes and cake thicknesses were obtained for the values for
K, and n as decided on in Section 5.6, and three S,.K,, solution combinations, as obtained
from the solution curve for datapoint 3 from the range 0.7 <K,,<1,4. These parameter
combinations are summarised in Table 5.5.

TABLE 5.5 Parameter Combinations/ Used in Model Predictions

! Ks n - Ka s.
1 150 3,5 0,7 0,00900
2 150 3,5 1,0 0,00725
3 150 3,5 1.4 0,00609

The predicted effects of inlet velocity, concentration and pressure on the steady-state flux are
shown in Figures 5.20, 5.21 and 5.22.
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FIGURE 5.20 Predicted Effect of Velocity on Steady-State Flux
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In all instances, the predicted fluxes are insensitive to the S., X,, combination used. This

confirms that a wide range of parameter combinations will yield equivalently good fits between
predictions and observations. The trends predicted with respect to the effects of operating
variables on steady-state fluxes are all consistent with experimental observations (see Chapter 2).
The largest errors are observed in predictions for the effect of velocity on flux. The predicted
curve straddles the experiment curve, under-predicting the flux by = 20 % at low velocity and
over-predicting by = 10 % at high velocities. Predictions for the effects of concentration and
pressure on flux are quite close to observations, except at high pressures where an over-prediction
of =5 % occurs.

The under-prediction at low velocities and over-prediction at high velocities could possibly be
due to the neglect of the effects of preferential particle deposition. If preferential deposition
occurs to a significant extent, the cake permeability would decrease as operating velocity is
increased (see Chapter 4). Employing a permeability function that is inversely dependent on
velocity will result in an increase in predicted fluxes at low velocities and a decrease in predictions
at high velocities, leading to a closer match between predictions and observations.

The relatively good predictions with respect to the effect of pressure on flux possibly indicate
that compression effects outweigh preferential deposition effects in determining the
permeability-pressure relationship.

Predictions for the effect of operating variables on the steady-state cake thickness are shown
in Figures 5.23 to 5.25. The cake thicknesses seem somewhat high, and in some instances are
up to a third of the tube radius. These high values could possibly be due to the use of the
"dead-end" permeability.  Without experimental measurements it is impossible to evaluate
whether the cake thicknesses are realistic. In all instances, however, the mass of cake as
calculated from the predicted cake thickness is substantially less than the mass of feed limestone
used in the respective run, indicating that these' thicknesses are not impossible from a mass
balance point of view.
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The overall model performance is shown in Figure 5.26, where predicted fluxes are plotted
against experimental fluxes. With the exception of two datapoints, all predictions lie within
+ 10% of experimental observations.
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In light of the conservative expectations expressed in the introduction to Chapter 5, the model
predictions are surprisingly good. This will be discussed further in Section 5.8.

5.7.2 Characteristics of Typical Solutions

A typicél steady-state solution is presented in Table 5.6 and Figures 5.27(a) and 5.27(b).
Figure 5.27(a) depicts the V.D, and C profiles over the entire boundary layer, while
Figure 5.27(b) shows a close up of the near wall region. The general characteristics exhibited
by D,, V and C were similar for all datapoints and all reasonable parameter combinations.

TABLE 5.6 Typical Model Predictions

Predictions for Datapoint 3 (Run Number 48)

Specified Operating Variables:

Velocity (U,) (m/s) 1,42
Concentration (Cz) (g/8) 39,4
Pressure (P) (kPa) 200
Temperature (7T ) (°C) 30

Experimental Observations

Flux at Tube Wall (/) (¢/m2h) 638
Predictions

Flux at Tube Wall (J, ) (¢/m2h) 639

Cake Thickness (f.) {mm) 2,96

Boundary Layer Thickness (5 ) {(mm) 0,99
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The radial fluid velocity increases towards the cake, reaches a maximum and then decreases
slightly in the near cake region. The net particle diffusivity decreases rapidly, reaches a
minimum and subsequently increases rapidly towards the cake surface. The concentration

increases very slowly, undergoes an abrupt, step-like increase and thereafter gradually approaches
the boundary concentration.

The origin of the rather unexpected trends for D, and C may be ascertained from Figure 5.28.

The unattenuated ("pure fluid") momentum diffusivity decreases towards the cake, eventually
becoming negligible close to the cake surface (Curve 1). Attenuation due to concentration
effects results in a more rapid decline in the near cake region (Curve 2). The low optimal
value for S, causes the particle diffusivity due to turbulence (Curve 3) to be substantially
lower than the attenuated momentum diffusivity. The shear induced diffusivity (Curve 4) is
a maximum at the cake surface, where both the shear rate and the concentration are at a
maximum. On moving away from the cake the shear induced diffusivity decreases very rapidly,
mainly due to the exponential dependence on concentration. The combination of Curves 3
and 4 yields the somewhat unique trend for the net particle diffusivity (Curve 5).
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FIGURE 5.28 Origin of Diffusivity Profile

The system adjusts the concentration profiles so that at all points in the boundary layer the
relationship VC = D,3C/aor holds (see equation 5.6). The concentration .gradient at any
point is thus a function of the V/ D, ratio at that point. Accordingly a substantial concentration

gradient exists at the point of minimum D, and the gradient then decreases,asV/D, decreases,
towards the cake surface.
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The question arises as to whether the above solution is realistic and meaningful. As noted
previously, the uncommon trends exhibited by D, and € were observed for all solution
parameter combinations, and for all data points.

The trend exhibited by V' is consistent with the studies of Kinney and Sparrow (1970) and
Hirata et al. (1982). The trends exhibited by D o and D, are consistent with their correlations,
and thus by implication are consistent with the studies from which the correlations were obtained.
The resultant trend for D, , however, cannot be evaluated by comparison with previous studies.
To the best of the author’s knowledge, the combination of D, and D,, is unique to the present
study. It was noted in Section 5.4.1.2 that the correlation for D,, would probably underestimate
the diffusivity at low concentrations and overestimate the same at high concentrations. If so,
the gradient of the D,, distribution will be less steep than that depicted in Figure 5.28. D,
however will most probably still pass through 2 minimum and the concentration profile will
still exhibit a sharp increase at the point of minimum diffusivity.

Noting that D, cannot be evaluated in terms of previous studies it will, by default, be assumed

that since the parts (i.e. V, D, and D,, ) are realistic, the sum of the parts (i.e. D and C ) are
also realistic.

One interesting interpretation of the concentration profile is that it indicates the existence of
a relatively distinct thickened suspension layer, of sub-critical concentration, next to the cake
(Figure 5.29).
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FIGURE 5.29 Indication of Distinct Thickened Suspension Layer next to Cake
Surface
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The existence of such a layer is explicable in terms of the V and D, distributions. The high
diffusivity at the cake surface promotes diffusion away from the cake. However, a significant
resistance to outward diffusion exists at the point of minimum diffusivity. Particles are thus
"trapped” between the cake surface and the point of minimum diffusivity. The radial fluid
velocity increases towards the cake surface. This further increases the tendency for particles
to accumulate in the near cake region. On moving towards the core, past the point of minimum
diffusivity, the diffusivity increases rapidly and the fluid velocity decreases significantly. This
results in a substantial increase in particle dispersion, leading to a relatively homogeneous
suspension, The overall effect is that particle accumulation is confined to a thin region next
to the cake, manifesting as a relatively distinct concentrated suspension layer.

That a distinct concentrated layer has not been observed in other known mass transfer systems,
e.g. molecular mass transfer, is explicable. For molecular mass transfer in turbulent flows,
the overall diffusivity will be the summation of the molecular diffusivity and the diffusivity
due to turbulence, ie. :

D,, = D + €,

.11

where D,, = net diffusivity of mass (m2/s)
D

€

.molecular diffusivity (m2/s}
eddy diffusivity of mass (m2/s)

i1

The molecular diffusivity, given by e.g. the Stokes-Einstein equation, will be constant across
a flow field. The eddy diffusivity of mass will exhibit a similar radial profile to the "pure
fiuid" eddy diffusivity of momentum (Curve 1 of Figure 5.28). Thus the net diffusivity will
either decrease progressively towards the wall or alternatively decrease towards the wall and
then attain a constant value a short distance away from the wall. This will yield a concentration
profile that increases smoothly and progressi@ly towards the wall.

Conversely, in particulate CFMF the equivalent of the molecular diffusivity, D, i.e. D, is not
a constant and decreases away from the cake. This, combined with the significant attenuation
of turbulent diffusivity in regions of high concentration, leads to the unique distribution for
D, depicted in Figure 5.27, and hence to a distinct concentrated layer.

For the entire feasible range for K, , this concentrated layer is 100 pm to 150 pm, ie. 20 to

30 particle diameters, thick (see e.g. Figure 5.16). It is seen that this distinct concentrated layer
is similar to the hypothetical precake proposed in Chapter 2. The similarity is purely coincidental.
The strong probability that this layer exists does however place the proposed mechanism for
cake growth and limit (Chapter 3) and the preferential deposition effect (Chapter 4) on a firmer
footing. It is of interest to note that the solution of a full convection-diffusion model, as has
been attempted in the present study, indicates that the cake growth and limit is most probably
controlled by a distinct concentrated layer next to the cake. This indicates that modelling effort
could be considerably simplified by restricting analysis to this layer, and lends credence to
proposed moving layer models for CFMF [e.g. Fane et al. (1990)].
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5.7.3 Sensitivity to Parameters

In Section 5.6.3 it was shown that the model is relatively insensitive to the boundary Jayer
constant, K, . Model sensitivity to the diffusivity parameters, ie. n, K, and S,, was tested by
choosing a parameter set from Table 5.5, independently changing each parameter by = 10%,
and comparing the predicted steady-state fluxes. Typical sensitivity analyses, for three
datapoiqts, are presented in Table 5.7.

TABLE 5.7 Typical Sensitivity Analyses
Base Case : Parameter Set 2
n=3,5
K,.=1,0
S.=0,00725
Varied Parameter 2 Change in Predicted Flux (%) ®
Datapoint 3 Datapoint 6 Datapoint 9
n
0,9 n 1,8 0,9 2,1
1,in 2,0 0,9 2,6
S.
0,9 S, 4.4 4,4 3,9
1,1 S, 5.8 4.7 4,2
Ksh
0,9 K, 2,6 2,2 1,3
l:] Ksh IQS 2:8 1!3
=
a all other parameters are as in base case
b
. redicted flux - predicted flux
%change _ P : | {base case)) XlOO
predicted flUX (pase case)

-

The predicted flux is relatively insensitive to n, confirming the observation that the parameter
solution surface is not a strong function of n (see Section 5.6.2), The model is also relatively
insensitive to K., , consistent with the observation that the parameter solution curve is not a
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strong function of k, for k,, > 0,6. A moderate sensitivity is exhibited with respect to g, .
Note that in many instances, the percentage change obtained by varying the parameters is
similar to the convergence criterion used in the outer iteration loop (1%, see Section 5.5),
indicating that the change is not significant. Overall, changing the parameter values by 10 %
results in a maximum 6% change in predicted fluxes, indicative of a model that is only moderately
sensitive to parameter values.

In general, the model exhibits a remarkable insensitivity to parameter values, for values within
certain wide ranges. From Figures 5.18 and 5.19, it is seen that predicted concentration profiles
and fluxes are not very sensitive to changes in K over the range 100 < K, < 200. Figure 5.14
indicates that the solution surface is not very sensitive to changes in n over the range 2,5 <nr
< 5,0. This is confirmed in Table 5.7. Figure 5.11 illustrates that the solution curve is insensitive
to changes in X, for K, > 0,6.

The insensitivity to K may be explained by noting that the concentration gradients are mostly

restricted to the region between the cake surface and the point of minimum diffusivity (see
Section 5.7.2). Thus, providing that the boundary layer is significantly greater than the thickness
of this region, the concentration profile, and hence model predictions, will be insensitive to
K. In effect therefore, the insensitivity to K, is due to the unique form of the diffusivity
distribution.

Model insensitivity to n and K ;, 15 most probably due to the strong mutual dependence between
the concentration and diffusivity distributions, and the contrasting effects that concentration
has on D, and D,,. (Recall that D, increases with concentration while D, decreases as
concentration is increased).

Consider, for example, system response when K., is increased. The increase in D, will promote

the diffusion of particles away from the cake and hence tend to increase the concentration in
regions away from the cake (i.e. increasing K, tend§ to spread concentration away from the
cake). However, any spread of concentration away from the cake will tend to decrease the
local D, in those regions away from the cake. This effect will, in turn, restrict the diffusion
of particles away from the cake and hence arrest the spread of concentration away from the
cake. Effectively a self-dampening effect exists, within the system. Any tendency to spread
concentration away from the cake is attenuated by a simultaneous decrease in D, . Conversely,
any tendency to pull the concentration profile towards the cake will be attenuated by a
simultaneous increase in D, .

At low K, the concentrated layer is well within the sublayer and the local D, is low. Hence

the self-dampening effect is not significant, and the parameter solution curve is sensitive to
K., . As K,,is increased, the thickness of the concentrated layer extends to the buffer zone,
where D, is significant. Here, seemingly, changes in K, and n are completely offset by the
self-dampening effect, resulting in model predictions being relatively insensitive to changes in
K ,.and nover a wide range thereof. The greater sensitivity with respect to S, may be explained
by noting that any change in S, results in a direct linear change in D, , in contrast to changes
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in n which affect D, indirectly, through the concentration profile (see equations 5.33). Thus
the self-dampening effect is less noticeable with respect to changes in S., manifesting as 2
greater sensitivity to that parameter.

Note that, similar to the uncommon concentration profile, the model insensitivity to parameters
is mainly due to the unique diffusivity distribution obtained by the combination of D and
D, .
5.7.4 Are the Parameter Values Realistic ?

5.74.1 Boundary Laver Constant - K,

Concentration boundary layer thicknesses for all datapoints, and for K,=150, are shown
Figure 5.30. 6 ranges from 0,8 mm to 1,5 mm, consistent with the boundary layer assumption
that concentration gradients are confined to a narrow region next to the cake. Further, in all
instances the concentration smoothly approaches the bulk concentration well before the edge
of the boundary layer (see e.g. Figure 5.21). Thus, K, is seemingly realistic.

12 H

Boundary Layer Thickness (mm)
tube radius

Run Number

FIGURE 5.30 Predicted Concentration Boundary Layer Thicknesses

5.7.4.2 Turbulence Attenuation Parameter - i

The turbulence attenuation function corresponding to n= 3,5 can be inferred from Figure 5.5.
At the current state of knowledge it is not possible to ascertain whether this attenuation function
is realistic for limestone.



5-67

57.4.3 Shear Diffusivity Parameter - K,

Following the argument in Section 5.4.1.2, it is expected that K, should be less than 1. As

noted in Section 5.7.1, it is impossible to ascertain an optimal X ,, since all S,, K ,, combinations
tested in the range 0.7 <K, <1.4 yielded equivalently good fits between predictions and
experimental observations. It may be concluded that K ,, values in the range 0,7 <K, <1 are
realistic-and consistent with expectations.

K, values > 1 are only feasible if the following apply :
(i) the diffusivity of angular particles is substantially greater than that of spherical particles

(i1) Leightpn’s correlation (equations 5.34 and 5.35) drastically underestimates the shear
induced diffusivity of small particles

At the present state of knowledge, the validity of the above cannot be ascertained.

5.7.4.4 Inverse Particle Schmidt Number - S,

For the entire feasible range for K ,, the corresponding solution values for S_are at least one

order of magnitude below that reported in previous studies (see Figure 5.17 and Section 54.1.1).
Possible reasons for this discrepancy are :

(i) The particle Schmidt number in concentrated suspensions may be significantly lower
than that in dilute suspensions. All the studies reported in Section 5.4.1.1 concerned
systems where the particle concentrations were well below that encountered in the
concentration boundary layers here. Soo (1987) has stated that the particle diff usivity
seems to decrease as concentration increases.

(i1) The underlying turbulence levels in systems having a significant radial concentration
(and hence viscosity) gradient may be substantially below that obtained with pure fluids.
Studies on turbulence have shown that the region of maximum turbulence intensity lies
within the buffer zone [Hinze (1975)]. From the model solutions obtained here it is
seen that regions of very high concentration extend well into the buffer zone. Noting
the significant attenuation of turbulence that will result in regions of high concentration,
it is therefore likely that the overall turbulence levels in CFMF could be well below
those reported for pure fluids, leading to the extremely low values for S..

If indeed the turbulence structure in systems that have a significant radial viscosity profile is
substantially different from that of pure fluids then the modelling approach adopted in this
study, i.e. using a diffusivity correlation developed for pure fluids with some correction factor
to account for concentration effects, is invalid. However, the alternative would be to employ
a turbulence model that correctly predicts turbulence diffusivities as a function of local fluid
properties and global flow characteristics. To the best of the author’s knowledge, such a model
is well beyond the scope of current technology in turbulence modelling.
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5.8 EVALUATION OF MODEL

Predicted steady-state fluxes show a good correspondence with experimental observations,
especially with regard to the effects of concentration and pressure on steady-state flux. This
good correspondence is notable, in view of the fact that solution parameter combinations
evaluated for a single datapoint were subsequently used to obtain predictions for the whole
dataset. The model also exhibits a remarkable insensitivity to parameter values, within certain
wide ranges thereof. The values for n, K., and K, are seemingly realistic, but the values for
S, are at least one order of magnitude below values reported in previous studies. The predicted
concentration profiles indicate that the concentration does not increase smoothly from bulk to
cake. Instead, a distinct thickened suspension layer, of sub-critical concentration, seems to
exist next to the cake. Seemingly, cake growth and limit is controlled by this 20 to 30 particle
diameter thick layer, consistent with the qualitative model presented in Chapter 3.

The good predictions obtained from parameters evaluated for a single datapoint are most probably
just another manifestation of the model insensitivity to parameter values. This insensitivity,
in turn, is almost wholly due to the unique form of the diffusivity distribution, obtained by
the combination of shear induced hydrodynamic diffusion and a concentration-attenuated
turbulent diffusion.

The good model predictions are notable, in light of the reservations expressed in Section 5.1.
However, there are various potential discrepancies which should be stated. The correlations
used to formulate the turbulent diffusivity function were developed for pure fluids. There are
no indications in the literature as to whether they can be confidently applied to systems having
significant radial concentration variations, as in the present study. The correlations for shear
induced hydrodynamic diffusivity were developed for relatively uniformly sized spherical
particles, of large particle diameter, sheared at low shear rates. In the system under study, the
shear rates are orders of magnitude greater, and the particles are considerably smatler. Further
for the limestone suspension used in the pre'sent study, charge effects etc. are likely to affect
inter-particle interaction at high concentrations. It is not known what effects this would have
on the shear diffusivity of the particles. Once again, there are no clear indications in the
literature as to whether the shear induced diffusivity correlations are in fact applicable to the
system under study.

It is thus feaé'ible that the unique form of the diffusivity distribution, and hence the model
insensitivity to parameters, may be an artefact introduced by the application of fluid and particle
dynamics technology to a system vastly different from those for which the technology was
developed. From that point of view, the fundamental basis of the model is not beyond guestion.

Despite the reservations noted above, the good model predictions are indeed encouraging,
indicating that at the very least a reasonable correlative model may be developed from current
technology. The model would have to be tested on other systems to assess its general validity
and predictive ability.
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The predictive ability of the model is currently restricted by the fact that most model parameters
cannot be specified a priori from suspension properties and flow conditions. This is mainly
due to the lack of definitive knowledge on turbulence in concentrated suspensions. In the
present instance, the parameters could have been obtained from a single datapoint. If this is
the general case, then the model could prove to be a useful order of magnitude predictive tool.
Once again, the validity of this approach can only be assessed if the model is tested on other
systems,

If, in general, model parameters cannot be estimated from a single datapoint, a set of best fit
parameters may be estimated from a regression on the entire experimental dataset. However,
due to the nested iteration loops, a regression on the whole dataset could prove to be extremely
demanding and expensive in terms of computing time. Thus if a model is required solely for
correlation of experimental results, and mechanistic inconsistencies are to be ignored, the simpler
models discussed in Chapter 3 may exhibit distinct advantages over the model proposed in this
study.

In applying the model to other systems the limits to its applicability should be taken into
cognisance. The model would only be applicable to systems where the limiting cake thickness
is controlled by convection-diffusion processes. It is entirely feasible that in some systems the
differentiation between stagnant cake and flowing suspension may be primarily determined by
the suspension rheology and flow conditions, and not by some critical concentration. In those
instances, it is most likely that the limiting cake thickness will be determined by a shear
mechanism, and not by the convection diffusion processes. Clearly, the model will be inapplicable
in such circumstances. Chapter 3 indicates some methods by which the controlling process may-
be inferred from the flux-time curves obtained at different operating velocities.

The utilisation of a shear induced hydrodynamic diffusivity limits the model’s applicability to
particulate suspensions, where fluid induced forces on particles are substantially greater than
physico-chemical interactions between particles. This would preclude the application of the
model to suspensions which exhibit significant non-Newtonian characteristics.

7



Chapter 6

CONCLUSION
AND
RECOMMENDATIONS

This study has concerned investigations into, and the modelling of, the cross-flow microfiltration
of particulate suspensions under turbulent flow conditions. The characteristic flux-time
behaviour, effects of operating variables on flux, and system responses to perturbations in
operating variables were experimentally obtained for a limestone suspension cross-flow fiitered
in a 25 mm woven hose tube. A qualitative model of the steady-state condition was then
developed, based on an analysis of the likely particle dynamics in the system. The qualitative
model was subsequently formulated into a mathematical model of the steady-state, with a strong
emphasis being placed on formulating mode! functions from current f luid and particle dynamics
technology. The study also entailed qualitative investigations into the effects of cake
characteristics on system behaviour.

The shape of the characteristic flux-time curve may be attributed to two phenomena. On
start-up, the flux decreases rapidly, due to a rapid increase in cake thickness. Thereafter, the
cake becomes limited to some steady-state thickness, but changes in the cake characteristics
lead to a slow, long-term decline in fiux. It was inferred that, for the limestone system studied,
this change in characteristics is most probably due to the infiltration of finer particles (fines)
into the cake, leading to a cake of progressively decreasing permeability. It has also been
inferred that fines infiltration is most likely to be a surface effect, i.e. fines infiltrate, and
progressively saturate, only the surface layers of the cake, and not the entire cake volume.

The flux-time curve is a function of the operating variables studied here, viz. inlet velocity,
bulk concentration and pressure. However, the flux may not be a unique function of the
operating point but may also be dependent on the operating path taken to reach the opérating
point. This was explained in terms of an apparent irreversibility of the cake, due to irreversible
hydraulic compression, and the fines infiltration effect. The path dependencé of the flux-time
curve has significant implications for operation of CFMF systems. In practise, various strategies
may exist to start-up a plant, or to change an operating point during operation. In light of the
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experimental findings in this study, some strategies could result in a considerably lower flux
than is expected at the final operating point. This necessitates a careful evaluation of possible
operational strategies. The general guide-lines in this regard are that operational changes that
require a decrease in cake thickness in order to be effective should definitely be avoided, and
changes that tend to increase the cake thickness should preferably not be implemented during
the slow decline in flux period.

Although the fines infiltration effect is likely to occur only in cakes formed from particulate
suspensions, irreversible hydraulic compression would most probably also occur in
non-particulate fouling layers e.g. colloidal gels formed in ultra-filtration systems. It is thus
highly feasible that ultra-filtration and non-particulate CFMF systems may also exhibit the
path dependence of flux observed in the present study. The extension of the present experimental
study to non-particulate systems could prove to be of practical significance.

The dependence of flux on the operating path, as well as the long-term flux decline, indicate
that system behaviour is determined not only by internal hydrodynamics but is also significantly
affected by the behaviour of the cake,

A qualitative model of the mechanisms that determine cake growth and limit was developed
from an analysis of the likely particle transport processes in the system, utilising the observations
from the experimental study to infer the controlling processes. In essence, there are three
significant particle transport processes - convection of particles towards the cake, shearing of
particles off the cake into the adjacent suspension layer (the precake), and diffusion of particles
from the precake back to the bulk suspension. This back-diffusion is effected by three
mechanisms, viz. shear induced hydrodynamic diffusion, entrainment by turbulent bursts and
entrainment by turbulent eddies. The convection - diffusion processes determine the
concentration of the precake, and hence whether the precake would reach some critical
concentration and consolidate into cake. The limiting, or steady-state cake thickness is thus
determined by the convection - back-diffusion processes, although the shearing mechanism is
an integral part of the back transport process. It was shown that this qualitative model explains
phenomena that are indicative of a shear controlled system (i.e. the preferential deposition
effect and the irreversibility of the cake formation), as well as phenomena associated with
convection-diffusion controlled systems (i.e. the effect of inlet velocity on flux-time behaviour,
and the semi-log relationship between the steady-state flux and bulk concentration).

The qualitative model was subsequently formulated into a math_gmatical model of the steady-state.
The appropriate steady-state equations were identified. Model functions required for the
solution of the equations were formulated from either laboratory. sc'a]e experiments, or from
fluid and particle dynainics correlations from the literature. Four model parameters resulted
which could not be quantified in terms of current technology. These were subsequently evaluated
by computational experiments and a manual regression technique, and were in effect evaluated
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from a single experimental datapoint. A numerical solution procedure was developed, which
enables the prediction of the steady-state cake thickness, flux and concentration profile for
specified operating and system variables.

The predicted steady-state fluxes show notably good correspondence with experimental
observations. Predictions are relatively insensitive to parameter values over wide ranges thereof.
The mode! also predicts unique concentration profiles, indicating that cake growth and limit
are most probably determined by thin, distinct, concentrated suspension layers next to the cake.

There are however notable limitations in the model. Firstly, the model is only applicable to
the cross-flow microfiltration of particulate suspensions that do not exhibit significant
non-Newtonian characteristics, and where the limiting cake thickness is convection-diffusion
controlled, This may preclude the application of the model to many suspensions encountered
in practice. Secondly, the model parameters cannot be quantified a priori from suspension
properties and flow conditions, or simple laboratory experiments. This may change as further
research is performed into turbulence in concentrated suspensions. For the present however,
mode! parameters must be quantified from regressive techniques, thereby limiting the predictive
ability of the model. In the present study, model parameters quantified from computational
experiments on a single datapoint yielded good predictions for the rest of the experimental
dataset. The model needs to be tested on other suspension systems in order to assess whether
this would be the general case.

Despite the reservations noted above, the good predictions of the model are indeed encouraging.
This indicates that, at the very least, a reasonable correlative model may be developed from
current fluid and particle dynamics technology and correlations. It is difficult to criticise the
model in terms of previous studies, noting that the model is strongly based on current knowledge
of fluid and particle dynamics. Some of the predictions of the model however, e.g. the unique
concentration and diffusivity profiles, depart radically from other known systems. Unequivocal
evaluation of the validity of the model may resolve to experimentally monitoring internal
quantities, e.g. the concentration profile, and comparing this to model predictions.

Modelling effort in this study has been restricted to the development of a steady-state model.
In practise, the long-term flux decline, albeit a slow process, may result in a significant reduction
in flux over a period of time. Confident design and optimisation of CFMF system would thus
also require some model of the slow flux decline. The steady-state model would be utilised to
determine the optimum operating and system variables for a specified application. Thereafter
the model of the long-term decline would be utilised to predict the true permeate production
rate, as well as to optimise operation-cleaning cycle times. ~

Rigorous modelling of ‘the long term decline is likely to be complex, and would necessitate a
knowledge of, inter alia, the size distribution of the suspension, the depth to which fines would
penetrate the cake and the combined effects of hydraulic compression and radial size distribution
variations on the permeability of the cake. In the present instance, it was observed that the
gradients of the flux-time curves during the slow decline in flux period were substantially
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similar, and'relatively independent of operating conditions. In such instances, the long-term
flux decline may be modelled in a wholly empirical form, with time as the only independent
variable. This should prove adequate for design purposes.
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SUSPENSION PROPERTIES

Al-1



Al.1 Particle Size Distribution

The particle size distribution was measured on a Malvern E3600 Type E Particle Sizer. The
cumulative size distribution is shown in Figure Al.l. The mean particle size (d, } was taken
to be the ¢4, size, i.e. 499 pm.
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FIGURE Al.1 Cumulative Particle Size Distribution

Al.2 Particle Density

The particle density was measured by liquid pycnometry, yielding

p. = 2 550 kg/m’
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A2-2

SUMMARY OF EXPERIMENTAL RUNS

TABLE RUN RUN DESCRIPTION
NUMBER
A2-1 47 Effect of bulk concentration on flux :-
Ch=198 g/¢, U,=1,42 m/s, P=200 kPa
A2-2 48 Effect of bulk concentration on flux (also central datapoint for
effect of velocity and pressure on flux) :-
Ca=1394g/t, U,=142m/s, P=200kPFa
A2-3 48R Repeat of Run 48
A2-4 49 Effect of bulk concentration on flux -
Cy=58,6g/t U,=142m/s, P=200kPa
A2-5 50 Effect of bulk concentration on flux :-
Cy=10,0g/¢, U,= 1,42 m/s, P =200 kPa
A2-6 51 Effect of bulk concentration on flux :-
Cy="776¢g/t, U,=142m/s, P=200kPa
A2-7 52 Effect of inlet velocity on flux :-
U.=17m/s, Cpz= 39,4 g/t, P=200 kPa
A2-8 53 Effect of inlet velocity on flux :-
U.= 1,13 m/s, Ce=39,48/¢ P=200kPa
A2-9 54 Effect of intet velocity on flux :- )
' U,=198 m/s, Cz=139,4¢g/t, P=200kPa
A2-10 55 Effect of inlet velocity on flux :-
U,=085m/s, Cp=239,4g/t, P=200kPa
AZ-11 58 Effect of pressure on flux :-
P ==300 kPa, U,= 1,42 m/s, Cy= 39,4 g/t
A2-12 59 Effect of pressure on flux :-
P =100 kPa, U,= 1,42 m/s, Cp= 39,4 g/t
A2-13 60 Effect of pressure on flux :-
P=150 kPa, U,= 1,42 m/s, C3=139,4 g/¢
A2-14 6l Effect of pressure on flux :-

P =250 kPa, U/,=142 m/s, Cz= 39,4 g/¢

NB  All steady-state fluxes chosen at 30 minutes after start-up




SUMMARY OF EXPERIMENT RUNS (continued)

TABLE RUN RUN DESCRIPTION
NUMBER

A2-15 67 System response o step-increase in concentration :-
start-up at Cz= 19,8 g/¢, then increase concentration to
77,6 g/£ after 10 minutes

A2-16 68 System response to step-increase in concentration -
start-up at Cs = 19,8 g/¢, then increase concentration to 77,6
g/ after 60 minutes

A2-17 70 System response to step-decrease in concentration :-
start-upatC = 77,6 g/£, then switch to water after 10 minutes

A2-18 71 System' response to step-decrease in concentration :-
start-up atC s = 77,6 /¢, then switch to water after 60 minutes

A2-19 72 System response to step-increase in velocity -
start-up at I, = 1,13 m/s, then increase velocity to 1,7 m/s
after 10 minutes

A2-20 74 System response to step-increase in velocity -
start-up at U, = 1,13 m/s, then increase velocity to 1,7 m/s
after 60 minutes

A2-21 75 System response to step-decrease in velocity :-
start-up at &/, = 1,7 m/s, then decrease velocity to 1,13 m/s
after 10 minutes

A2-22 76 System response to step-decrease in velocity :-
start-up at &, = 1,7 m/s, then decrease velocity to 1,13 m/s
after 60 minutes

A2-23 77 System response to step-decrease in pressure -
start-up at P = 200 kPa, then decrease pressure 1o 100 kPa
after 10 minutes

A2-24 78 System response to step-decrease in pressure -
start-up at P = 200 kPa, then decrease pressure to 100 kPa
after 60 minutes

A2-25 80 System response to step-increase in pressure :-
start-up at P = 100 kPa, then increase pressure to 200 kPa
after 10 minutes

A2-26 8! System response to step-increase in pressure ;-
start-up at P = 100 kPa, then increase pressure (o 200 kPa
after 60 minutes




TABLE A2-1 Fiux Measurements - RUN 47
Start-up Conditions :
Bulk Concentration (Cjz) (g/8) 19,8
Superficial Inlet Velocity (U,) (m/s) 1,42
Pressure (P ) {kPa) 200
Temperature (°C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (¢/m2h)
0
5 1376,5
75 11445
i0 1039,4
12,5 985,7
15 §85,7
20 8259
25 775,6
30 749,0
35 717,3
40 700,9
45 682,1
50 676,1
55 658,6
60 646,0
65 837,9
70 631,4
75 . 618,6
80 616,1
85 601,5
90 592,2
95 £89,9
100 588,8
105 576,6
110 576,6
115 569,0
120 561,7




A2-5

TABLE A2-2

Flux Measurements - RUN 48

Start-up Conditions :

Bulk Concentration (Cjz) (g/8) 39,4
Superficial Inlet Velocity (U5) (m/s) 1,42
Pressure (P) (kPa) 200
Temperature (°C) 30
Time from Start-up Permeate Flux {J,)
(minutes) (¢/m?h)
0
5 1079,8
7.5 904,1
10 823.7
12,5 767,8
15 738,1
20 700,9
25 664,3
30 6379
35 623,6
40 608,7
45 599,2
50 589,9
55 579,8
60 571,2
65 563,8
70 557,6
75 554,6
80 544,7
B5 544,7
90 538,9
05 531,4
100 520,6
105 523,2
110 517,9
115 616,2
120 513,6




TABLE A2-3 Flux Measurements - RUN 48R
Start-up Conditions :
Bulk Concentration (Cj) (g/8) 39.4
Superficial Inlet Velocity (Us) (m/s) 1,42
Pressure (P ) (kPa) 200
Temperature (°C) 30
Time from Start-up Permeate Flux (J,)
{minutes) (¢/m2h)
0
5 1057,4
10 812,7
15 732,8
20 700,9
25 665,7
30 6474
35 628,3
40 611,2
45 602,7
50 595,7
§5 586,5
60 579,8
65 §71,2
70 566,9
75 562,3
80 557,6
85 §52,6
90 549,6
95 5437
100 37,0
105 534,2
110 5296
115 526,0
120 22,4




TABLE A2-4

Flux Measurements - RUN 49

Start-up Conditions :

Bulk Concentration (Cj) (g/8) 58,6
Superficial Inlet Velocity (U,) {m/s) 1,42
Pressure (P) {(kPa) 200
Temperature {(*C) 30
Time from Start-up Permeate Flux (/)
(minutes) (¢/m2h)

0

5 878,1

7.5 763,9

10 714,0

12,5 673,1

15 655,7

20 613,86

25 594,5

30 574,4

35 562,8

40 559,7

45 547,6

50 536,1

55 532,4

60 528,7

65 523,2

70 517,9

75 511,0

80 501,8

85 496,1

90 492,9

95 483,5

100 486,6

105 4775

110 4715

115 4718

120 465,8




TABLE A2-5 Flux Measurements - RUN 50

Start-up Conditions :
Bulk Concentration (Cj) (g/8) 10,0
Superficial Inlet Velocity (TU,) (m/s) 1,42
Pressure (P ) (kPa) 200
Temperature {°C) 30
Time from Start-up Permeate Flux (J.,;)
(minutes) (£/m2h)
0
5 1509,9
7.5 1576,1
10 1346,2
15 1131,8
20 1025,4
25 _ 934,5
30 885,7
35 856,0
40 830,4
45 802,0
50 787,6
55 71,7
60 745,3
65 745,3
70 734,6
75 719,0
20 714,0
85 699,3
90 692,9
95 6898
100 . 686,7
105 676,1
110 664,3
115 662,9
120 : 657,2




A2-9

TABLE A2-6 Flux Measurements - RUN 51
Start-up Conditions :
Bulk Concentration (Cj) {g/f) 77,6
Superficial Inlet Velocity (U,) (m/s) 1,42
Pressure (P) {kPa) 200
Temperature ( °C) 30
Time from Start-up Permeate Flux (J,)
{minutes) (¢/m2h)
0
5 763,9
75 €79,1
10 630,1
12,5 609,9
15 591,1
20 565,9
25 540,8
30 529,6
35 517,9
40 508,4
45 506,8
50 4993
55 496,9
60 488,9
65 483,5
70 478,2
75 476,0
80 469,4
85 468.7
90 463,0
as 461,6
100 456,8
105 4547
110 452,0
115 4487
120 4435




A2-10

TABLE A2-7 Flux Measurements - RUN 52
Start-up Conditions :
Bulk Concentration (C5) (g/6) 39,4
Superficial Inlet Velocity (T,) {m/s) 1,7
Pressure (P) (kPa) 200
Temperature { °C) 30
Time from Start-up Permeate Flux (J,)
{minutes) (£/m2h)
0
§ 1153,1
7.5 1018,6
10 912,2
12,5 873,1
15 828,1
20 773,6
25 738,3
30 7224
35 694,5
40 679,1
45 668,7
50 660,0
&5 652,9
€0 644,7
65 '836,6
70 6288
75 621,1
80 612,4
85 602,7
90 599,2
95 592,2
100 585,4
105 582,1
110 5§76,5
115 569,0
120 563,8




A2-11

TABLE A2-8

Flux Measurements - RUN 53

Start-up Conditions :

Bulk Concentration (Cz)

Superficial Inlet Yelocity
Pressure (P)
Temperature

@)

(2/8) 39,4
(m/s) 1,13
(kPa) 200
(°C) 30

Time from Start-up

Permeate Flux (/)

{minutes) (¢/mZh)
0
5 1042,9
7,5 856,0
10 762,0
12,5 709,0
15 62,9
20 617,3
25 591,1
30 562,8
35 545,7
40 528,7
45 521,5
50 512,7
55 §11,0
60 4937
65 485,8
70 4850
75 431,2
80 476,7
85 471,6
90 468,0
95 463,0
100 459,5
105 454,7
110 4541
115 450,0
120 448,1




AZ-12

TABLE A2-9 Flux Measurements - RUN 54
Start-up Conditions :
Bulk Concentration (Cj) (g/8) 39.4
Superficial Inlet Velocity (7, ) (m/s) 1,98
Pressure (P ) (kPa) 200
Temperature {°C) 30
Time from Start-up Permeate Flux (J,)
{(minutes) (¢/m?2h)
0
5 1189,0
7.5 1064,7
10 979,4
12,5 9149
15 888,3
20 851,2
25 8304
30 802,0
3s 7776
40 762,0
45 756,4
50 739,9
55 725,8
60 7156
65 712,3
70 694,5
75 683,6
80 677,6
85 674,6
o0 665,7
95 652,9
100 648,8
105 644,7
110 6406
115 635,3
120 628,28




A2-13

TABLE A2-10 Flux Measurements - RUN 55
Start-up Conditions :
Bulk Concentration (Cz) (g/8) 39,4
Superficial Inlet Velocity (U,) (m/s) 0,85
Pressure (P ) (kPa) 200
Temperature {°C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (¢/m2h)
0

5 1022,0

7.5 819,2

10 707,4

12,5 646,0

15 00,3

20 547,6

25 511,0

30 4985

35 484,3

40 474,5

45 460,2

50 454,1

55 450,0

60 448,1

85 4347

70 432,2

75 426,2

80 4250

8s 423,1

90 4203

95 418,6

100 416,3

105 414,1

110 410,2

115 408,0

120 404,7




A2-14

TABLE A2-11

Flux Measurements - RUN 58

Start-up Conditions :
Bulk Concentration (C3)
Superficial Inlet Velocity
Pressure (P )
Temperature

W)

{g/8) 39,4
(m/s) 1,42
{kPa) 300
(°C) 30

Time from Start-up

Permeate Flux (J,)

{minutes) (¢/m?2h)

o

5 1193,7
10 909,6
15 789,6
20 762,0
25 704,1
30 686,7
35 79,1
40 661,4
45 654,3
50 640,6
55 628,8
60 622,4
65 607,5
70 600,3
75 601,56
80 587,6
85 589,9
90 584,8
95 576,6
100 570,1
105 561,7
110 558,6
115 556,6
120 553,6




TABLE A2-12 Flux Measurements - RUN 59

Start-up Conditions :
Bulk Concentration (C3) (g/8) 394
Superficial Inlet Velocity (U/,) (m/s) 1,42
Pressure (P) {kPa) 100
Temperature (°C) 30
Time from Start-up Permeate Flux (/)
{minutes) (¢/m2h)

i

5 715,0

10 612,4

15 560,7

20 538,1

25 517,9

30 501,8

35 ' 4986,1

40 485,0

45 4775

50 468,0

55 4595

€0 4575

65 452,0

70 4487

75 4474

80 440,3

85 439,0

90 432,2

95 426,8

100 4238

105 4186

1o - 414,1

115 416,9

120 413,5




A2-16

TABLE A2-13

Flux Measurements - RUN 60

Start-up Conditions :

Bulk Concentration (Cz) (g/8) 39.4
Superficial Inlet Velocity (U, ) (m/s) 1,42
Pressure (P ) (kPa) 150
Temperature { °C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (¢/m2h)

0

5 870,6

10 707,4

15 650,2

20 613,6

25 5899

30 574,4

35 558,6

40 555,6

45 550,6

50 5333

55 524,1

60 517,9

65 506,8

70 505,9

75 504,3

80 4937

85 495,3

90 488,9

95 4775

100 476,0

10§ 474,5

110 468,7

115 467,2

120 465,1
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TABLE A2-14 Flux Measurements - RUN 61
Start-up Conditions :
Bulk Concentration (C3) (g/8) 39,4
Superficial Inlet Velocity (U,) (m/s) 1,42
Pressure (P) (kPa) 250
Temperature ( °C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (¢/m2h)
0
5 1161,9
10 880,6
15 7747
20 734,86
25 €86,7
30 671,6
a3 652,9
40 643,3
45 632,7
50 6236
55 611,2
80 603,9
65 584,3
70 586,5 .
75 §80,9
80 573,3
85 566,9
o0 564,8
95 558,6
100 553,6
105 549,6
110 540,8
115 541,8
120 539,9




A2-18

TABLE A2-15

Flux Measurements - RUN 67

Start-up Conditions :

Bulk Concentration (Cj3) (g/6) 19,8
Superficial Inlet Velocity (U,) {m/s) 1,42
Pressure (P ) {kPa) 200
Temperature (°C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (£/m2h)

0

5 1358,1

10 985,7
Increase concentration to 77.6 g/¢

15 765,9

20 677,6

25 619,8

30 587,6

35 554,6

40 531,4

45 516,2

50 503,4

55 492,1

60 484,3

65 478,2

70 4738

75 466,5

80 461,6

25 455,4

90 4527

95 4494

100 446,1

105 442,9

110 442,9

115 436,5

120 4334
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TABLE A2-16 Flux Measuremenis - RUN 68
Start-up Conditions :
Bulk Concentration (C3) (g/8) 19,8
Superficial Inlet Velocity (¥,) {m/s) 1,42
Pressure (P) {kPa) 200
Temperature ( °C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (£/m?h)

0

5 1455,1

10 1131,8

15 952,0

20 865,7

25 814,9

30 781,5

35 7453

40 717,3

45 96,1

50 677,6

55 654,3

60 630,1
Increase concentration to 77,6 g/¢

65 579,8

70 541,8

75 515,3

80 4889

85 473,8

o0 460,9

g5 449,4

100 441,86

105 435,3

110 4298

115 418,0

120 412,9

125 408,5

130 406,4
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TABLE A2-17 Flux Measurements - RUN 70
Start-up Conditions :
Bulk Concentration (Cj;) (g/8) 71,6
Superficial Inlet Velocity (U, ) (m/s) 1,42
Pressure (P ) (kPa) 200
Temperature (°C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (¢/m2h)

0

5 770,6

10 6376
Decrease concentration to 0 g/¢ (switch to water)

15 635,9

20 635,4

25 636,5

30 636,5

35 633,7

40 835,4

45 634,8

50 622,6

55 630,9

60 633,7

65 633,1

70 633,1

75 633,1

20 633,1

85 6334

90 633,1
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TABLE A2-18 Fiux Measurements - RUN 71
Start-up Conditions :
Bulk Concentration (C3) (g/8) 71,6
Superficial Inlet Velocity (U,) (m/s) 1,42
Pressure (P) (kPa) 200
Temperature ( °C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (¢/m2h)

0

3 760,4

10 630,9

15 500,5

20 561,4

25 543,1

30 524,7

35 515,1

40 509,9

45 505,3

50 499,6

55 494,6

80 489,9
Decrease concentration to 0 g/¢ (switch to water)

85 489,3

70 489,3

75 489,9

80 489,9

85 492,2

90 492,7

95 487,9

100 489,6

105 484,8

110 4877

115 490,7

120 490,4
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TABLE A2-19

Flux Measurements - RUN 72

Start-up Conditions :
Bulk Concentration (Cj;)
Superficial Inlet Velocity (U,)
Pressure (P )
Temperature

(g/8) 39,4
{m/s) 1,13
{kPa) 200
(°C) 30

Time from Start-up

Permeate Flux ({J.)

(minutes) (¢/m2h)

0

5 1015,2
10 754,5

Increase velocity to 1,7 m/s

15 732,8
20 719,0
25 704,1
30 688,2
35 682,1
40 665,7
45 662,9
50 654,3
55 643,3
60 636,6
85 626,2
70 622,4
75 611,2
20 607,5
85 §99,2
90 593,4
95 586,5
100 5777
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TABLE A2-20 Flux Measurements - RUN 74

Start-up Conditions :
Bulk Concentration (Cjz)
Superficial Inlet Velocity (U, )
Pressure (P )
Temperature

(g/8)
(m/s)
(kPa)
(°C)

39,4
1,13
200
30

Time from Start-up

Permeate Flux (J, )

{minutes) (¢/m2h)

0

5 1053.7
10 756,4
15 662,9
20 611,2
25 585,4
30 555,6
35 544,7
40 5287
45 517,9
50 509,3
55 5034
50 492,9

Increase velocity to 1,7 m/s

65 492,9
70 488,1
75 4843
80 4775
85 473,8
90 470,8
95 4687
100 462,3
105 453,4
110 453 4
115 4494
120 446,1
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TABLE A2-21 Flux Measurements - RUN 75
Start-up Conditions ;
Bulk Concentration (Cjz) {g/t) 394
Superficial Inlet Velocity (U/,) {m/s) 1,7
Pressure (P) {kPa) 200
Temperature ( °C) 30
Time from Start-up Permeate Flux (J,)
{minutes) (£/mZ2h)

0

5 1222,3

10 808,8
Decrease velocity to 1,13 m/s

15 709,0

20 638,6

25 §83,2

30 555,6

25 543,7

40 §22,4

45 510,1

50 500,9

55 4929

€0 4889

65 485,0

70 481,2

75 477,5

80 478,0

85 4716

20 470,1

g5 468,0

100 464,4

105 4616

110 4575

115 454,7

120 452,7
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TABLE A2-22

Flux Measurements - RUN 76

Start-up Conditions :
Bulk Concentration (Cj)
Superficial Inlet Velocity (U,)
Pressure (P )
Temperature

{g/f) 39,4
{m/s) 1,7
{kPa) 200
(°C) 30

Time from Start-up

Permeate Flux (J,)

(minutes) (¢/m?h)

)

5 1198,3
i0 954,9
i 863,2
20 792,7
25 756,4
30 7276
35 709,0
40 692,9
45 679,1
50 664,3
55 647,4
80 636,6

Decrease velocity to 1,13 m/s

65 544,7
70 516,2
75 496,9
BO 483,5
85 470,1
90 460,9
95 452,7
100 442,9
105 436,5
110 431,0
115 426,8
120 424,4
125 419,7
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TABLE A2-22
(continued)

Flux Measurements - RUN 76

Start-up Conditions :

Bulk Concentration (C3) (g/f) 39,4
Superficial Inlet Velocity (U.) {m/s) 1,7
Pressure (P) (kPa) 200
Temperature (°C) 30
Time from Start-up Permeate Flux (/)

{(minutes)

(¢/m2h)

(velocity was decreased to 1,13 m/s, 60 minutes after start-up)

130 415,8
135 4118
140 408,5
145 405,8
150 4037
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TABLE A2-23 Flux Measurements - RUN 77
Start-up Conditions :
Bulk Concentration (Cz) (g/8) 39,4
Superficial Inlet Velocity (U/.) (m/s) 1,42
Pressure {P) (kPa) 200
Temperature ( °C)
Time from Start-up Permeate Flux (J.)
(minutes) (¢/m2h)
0
5 1053,7
10 814,9
Decrease pressure to 100 kPa
15 434,1
20 431,0
25 4286
30 425,6
35 423,2
40 423,2
45 419,2
50 416,9
55 414,1
60 411,3
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TABLE A2-24 Flux Measurements - RUN 78

Start-up Conditions :

Bulk Concentration (C3z) (g/8) 39.4
Superficial Inlet Velocity (U,) (m/s) 1,42
Pressure (P ) (kPa) 200
Temperature (°QC) 30
Time from Start-up Permeate Flux (J,)
(minutes) {£/m?2h)

0

5 1091,3

10 837,2

15 760,1

20 719,0

25 671,6

30 650,2

35 630,1

40 621,1

45 609,9

50 600,3

55 94,5

60 585,4
Decrease pressure to 100 kPa

65 215,0

70 314,7

75 315,0

80 314,1

85 313,4

20 313,4

95 313,1

100 312,1

105 311,8

110 3125

116 312,5

120 3118
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TABLE A2-25 Flux Measurements - RUN 80
Start-up Conditions :
Bulk Concentration (Cz) (g/8&) 394
Superficial Inlet Velocity (U,) (m/s) 1,42
Pressure (P) ~ {kPa) 100
Temperature {°C) 30
Time from Start-up Permeate Flux (J,)
(minutes) (¢/m2h)

0

5 762,0

10 608,7
Increase pressure to 200 kPa

15 954,9

20 802,0

25 712,3

30 662,9

35 626,2

40 605,1

45 592,2

50 576,6

55 566,9

60 §57,6

65 50,6

70 543,7

75 526,9

80 530,5

85 526,9

20 523,2

95 517,1

100 510,1

105 509,3

110 500,1

115 4053

120 488,9
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TABLE A2-26 Flux Measurements - RUN 81
Start-up Conditions :
Bulk Concentration (C3) (g/8) 354
Superficial Inlet Velocity (Us) {m/s) 1,42
Pressure (P ) (kPa) 100
Temperature (°C) 30
Time from Start-up Permeate Flux (J.)
(minutes) (¢/m2h)

0

5 773.,6

10 76,1

15 587,6

20 550,6

25 526,0

30 509,3

35 4669

40 4843

45 4716

50 463,7

55 4561

60 4507
Increase pressure to 200 kPa

65 8929

70 608,7

75 564,8

80 526,9

85 513,

90 4985

95 4335

100 470,

105 461,6

110 452,7

115 446,1

120 4397






