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ABSTRACT 
 

In potable water preparation, chlorination is the last step before the potable water enters the 

distribution network. Umgeni Water Wiggins Waterworks feeds the Southern areas of Durban. 

A reservoir at this facility holds treated water before it enters the distribution network. To 

ensure an adequate disinfection potential within the network, the free chlorine concentration in 

the water leaving the reservoir at the Umgeni Water Wiggins Waterworks should be between 

0.8 and 1.2 mg/L. The aim of this study was to develop an effective strategy to predict and 

control the chlorine concentration at the exit of the reservoir. This control problem is made 

difficult by the wide variations in flow and level in the reservoirs, together with reactive decay 

of the chlorine concentration. 

 

A Computational Fluid Dynamic study was undertaken to gain understanding of the physical 

processes operating in the reservoir (FLUENT software). As this kind of modelling is not yet 

applicable for real-time control, compartment models have been created to simulate the 

behaviour of the reservoir as closely as possible, using the results of the fluid dynamic 

simulation. 

 

These compartment models were initially used in an extended Kalman filter (MATLAB 

software). In a first step, they were used to estimate the kinetic factor for chlorine consumption 

and in a second step, they predicted the chlorine concentration at the outlet of the reservoir. The 

comparison between predictions and data, allowed the validation of the compartment models. 

 

A predictive control strategy was developed using a Dynamic Matrix Controller, and tested off-

line on the compartment models. The controller manipulated the chlorine concentration in the 

inlet of the reservoir in order to control the chlorine concentration in the outlet of the reservoir. 

 

Finally, the simplest compartment model was implemented on-line, using the Adroit SCADA 

system of the plant, in the form of a Kalman filter to estimate the chlorine decay constant, as 

well as a predictive model, using this continuously-updated decay parameter. The adaptive 

Dynamic Matrix Controller using this model was able to control the outlet chlorine 

concentration quite acceptably, and further improvements of the control performance are 

expected from ongoing tuning. 
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PREFACE 
 

Umgeni Water initiated this project to be able to control the chlorine concentration at the exit of 

the chlorine contact reservoir at Wiggins waterworks by manipulating the chlorine 

concentration in the inlet of the chlorine contact reservoir. 

 

The investigation required data collected from Umgeni Water Wiggins Waterworks, in Durban. 

Other studies were made in the postgraduate offices of the School of Chemical Engineering at 

the University of Natal, Durban under the supervision of Professor Michael Mulholland and the 

co-supervision of Chris Brouckaert, Professor Chris Buckley and Professor Marie Véronique Le 

Lann. 

 

The following courses were completed with the corresponding credits and results achieved: 

DNC4DC1 Process Dynamics and Control    65% (16 credits) 
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CHAPTER 1  

INTRODUCTION 
 

This chapter presents an overview of the Wiggins Waterworks. It introduces the problem of 

controlling the chlorine concentration at the exit of the works in light of a variable demand. The 

chapter concludes by outlining the objectives of the dissertation. 

1.1 THE WATER TREATMENT PLANT 

Umgeni Water is the largest water authority in the Kwa-Zulu Natal Province of South Africa. 

The area of supply covers some 24 000 square kilometres with the main boundaries being the 

Indian Ocean in the East, the Tugela and Mooi Rivers in the North, the Drakensberg Mountains 

in the West and the Mkomazi and Mzimkulu Rivers in the South (Figure 1-1). 

 

 
Figure 1-1: Umgeni Water operational area (Umgeni Water (2002)) 

 



CHAPTER 1 INTRODUCTION

 

1-2 

Wiggins Waterworks is situated in the Cato Manor district of Durban. The design of the 

Wiggins Waterworks commenced in September 1980 with a commitment to increase the supply 

of potable water to the Durban area by the summer of 1984. Wiggins Waterworks (Figure 1-2) 

is designed to treat water from the Mgeni River intake, and also water supplied from Inanda 

Dam. A system of five tunnels and pipelines transfers raw water by gravity. Inanda Dam is the 

last dam situated on the Umgeni River. 

 

 

 

 
 

Figure 1-2: Wiggins Waterworks aerial view (Umgeni Water (2002)) 

 

There are several purification steps taken at Wiggins Waterworks to make water clean and safe 

for domestic and industrial consumption. The process diagram of the plant is shown in Figure 1-

3. Potable water flows by gravity from its 124 ML storage reservoir to southern Durban and 

adjacent areas. Presently the design capacity of the waterworks is 350 ML/d of raw water. The 

final water has a pH value ranging between 7.8 and 8.2 and a turbidity value below 0.8 NTU.  
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Figure 1-3: Wiggins Waterworks process diagram (Umgeni Water (2002)) 

 

1.2 CONTROL PROBLEM 

At the end of the treatment plant, a chlorine contact reservoir, divided into two sections, holds 

treated water (Step F, Figure 1-3). Because of the variable demand, the reservoir level and 

residence time vary over a range of values. The maximum combined capacity of the two 

reservoir sections is 120 ML (7.05 m level), and the minimum capacity is 25.5 ML (1.5 m 

level). The daily average demand is 140 ML/d, with a daily peak about 220 ML/d. However, 

this can occasionally be as high as 320 ML/d, making the control of the chlorine dosing 

difficult. The chlorine residual concentration declines with time, so that the outlet chlorine 
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concentration will depend on the residence time in the reservoir. The chlorine concentration of 

final water should be kept between 0.8 and 1.2 mg/L: above 0.8 mg/L to ensure it maintains 

water disinfection within the distribution network and below 1.2 mg/L to prevent taste and 

odour complaints. Prior to this investigation, the chlorine dosage in the inlet of the reservoir has 

been manipulated manually based on the experience of the operators.  

 

The aim of this project is to develop an effective real-time control strategy to predict and control 

the chlorine concentration at the exit of the plant, and hence allow optimal targeting of the 

chlorine concentration in water delivered into the Durban Metro region. 

 

First, a Computational Fluid Dynamic (CFD) simulation was undertaken to gain an 

understanding of the physical processes in the reservoir. However, this kind of modelling is too 

computationally intensive to be applicable for real-time control. Therefore, three compartment 

models were created to estimate the kinetic decay factor of the chlorine and to control the outlet 

chlorine concentration. These models were solved within an extended Kalman filter. Finally, 

Dynamic Matrix Control algorithm was chosen to control the outlet chlorine concentration. 

1.3 DISSERTATION LAYOUT 

In Chapter 2, the background of chlorine contact reservoir technologies and process control are 

reviewed. Chapter 3 presents the chlorine contact reservoir and the data collected from the 

plant. It considers also the viability of using a tracer test to predict the residence time 

distribution of the chlorine contact reservoir. The Computational Fluid Dynamic simulation is 

described in Chapter 4. Then, in Chapter 5, the different compartment models to predict the 

outlet chlorine concentration are created and solved using an extended Kalman filter. Chapter 6 

deals with the arrangements and properties of the controller, and how the controller was built. 

Chapter 7 explains on-line implementation of the model predictive controller. Chapter 8 

presents the conclusions and recommendations derived from this study. 
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CHAPTER 2  

LITERATURE REVIEW 
 

This chapter reviews the kinetics of chlorine disinfection, the modelling of equipment 

hydraulics and tracer concentrations , and it introduces the concept of process control. 

2.1 CHLORINE CONTACT RESERVOIR 

As Faust et al. (1999) explained the disinfection can be traced back to about 2000 BC. 

Disinfection is defined by Desjardins (1975) as the destruction or the elimination of 

microorganisms liable to pass disease on to people. It was only during the 17th century that 

scientists could explain why certain types of water caused illness. In the 1860s and 1870s, large 

treatment and distribution facilities were developed to deliver potable water to the increasing 

urban population. Robert Koch discovered in 1881 that chlorine could deactivate water borne 

bacteria (American Water Works Association, 1999). Since then, the process has been improved 

and several steps have been added to obtain the best possible water quality. A modern potable 

water treatment plant may be represented schematically as shown in Figure 2-1. 

 

 
 1   2      3  4  5  

  
Figure 2-1: Simplified scheme of a potable water treatment plant (Lyonnaise des eaux 

(2002)) 

 

1. Pre-treatment  

Water is taken from dams or rivers where it passes through wire screens at the intake points to 

remove any large solid objects.  

 

2. Mixing, Coagulation and Flocculation 

Process chemicals are mixed with the water. These alter the surface charge on colloidal solids 

promoting coagulation of suspended dirt particles. The particles become large enough to sink to 

the bottom of the reservoir in a reasonable time. 
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3. Sedimentation and Filtration 

The clear water at the top of the clarifier is skimmed off and passed through filters filled with 

sand and gravel to remove suspended matter.  

 

4. Disinfection 

Finally chlorine is added to kill any remaining microbes. Samples of the treated water are tested 

to make sure the water is safe for drinking.   

 

5. Distribution 

The clean drinking water is normally stored in a large reservoir, whence it is distributed. 

 

The World Health Organisation (1984) guidelines state that, to achieve virus free water, 

chlorinated water should receive 30 min contact time with a minimum free chlorine residual of 

0.5 mg/L. On the other hand, the customer will complain about the strong taste of the chlorine if 

the concentration is above 1.2 mg/L. Therefore managers of drinking water supplies are 

concerned about the control of the free residual chlorine concentration in the water which leave 

the plant. 

 

One of the process approaches that evolved since the introduction of chlorination is the chlorine 

contact reservoir. As van der Walt (2002) explained, this reservoir is at the end of the treatment 

plant and aims to achieve sufficient contact time between the dissolved chlorine and the water.  

 

According to Laubush  (1955) and Desjardins (1975), the products used most commonly to 

obtain disinfection by chlorine are chlorine gas (Cl2), sodium hypochlorite (NaOCl), calcium 

hypo-chlorite (Ca(OCl)2), mono-chloramines (NH2Cl) and chlorine dioxide (ClO2). Chlorine gas 

is the most widely used, however sodium hypochlorite is sometimes generated on-site because it 

is easy to manipulate and safe for the operator.  

 

These two authors emphasise the definition of the different expressions: 

• Combined residual chlorine is that residual chlorine existing in the water in chemical 

combination with ammonia or organic nitrogen compounds. 

• Free residual chlorine is that residual chlorine existing in the water as hypochlorous 

acid (HOCl) or hypochlorite ion (OCl-). 

• Total residual chlorine is the sum of the free residual chlorine and the combined 

residual chlorine. 
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However, the term chlorine is generally used for free residual chlorine concentration. Indeed it 

defines the chlorine which is available to disinfect the water, and on-line instruments are 

available to measure the free residual chlorine concentration.  Thus, in the following work, free 

residual chlorine will be termed as chlorine. 

2.2 CHLORINE CONTACT RESERVOIR KINETICS 

The chlorine concentration decreases with time because it is consumed during disinfection and 

can be lost at free surfaces. The chlorine decay in tanks has not been investigated to the same 

extent as the investigation of chlorine decay in pipelines. Viljoen et al. (1997) studied the 

chlorine decay in pipelines for free chlorine and for monochloramines:   

• the general formulation for an nth order decay reaction rate is: 

( )nr kC t= −                                                        (2.1)   

where  C = chlorine concentration (mg/L) 

            k  = chlorine kinetic factor ( (mg/L)1-n /d) 

t  = time (d) 

 n = order of the reaction (-) 

 

• free chlorine decay showed a large variation in decay rate (0.96 to 1.2 per day) and 

in reaction order (0.36 to 1.22) 

• a first order decay formulation proved a good compromise between accuracy and 

simplicity. The formulation is given by: 

( )r kC t= −                                                      (2.2) 

 

Hua et al. (1998), Powell et al. (1999), and van der Walt (2002) reach the same conclusion and 

found that the chlorine kinetic factor ranged between 0.01 per day and 6 per day. These values 

have to be used with caution, because they are for the chlorine decay in pipelines. In reservoirs, 

water volumes are more important so short-circuiting and re-circulation can be expected, 

changing the chlorine decay. Moreover, these values include the pipe wall reaction, which does 

not take place in reservoirs.  

 

2.3 CHLORINE CONTACT RESERVOIR HYDRAULICS  

The theoretical contact reservoir could be represented by a plug flow reactor. As Levenspiel 

(1999) explained, a plug flow reactor is characterized by the fact that the flow of fluid through 

the reactor is orderly with no element of fluid overtaking or mixing with any other element 
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ahead or behind. The necessary and sufficient condition for a plug flow is for the residence time 

(τ) in the reactor to be the same for all fluid elements. 

                      V
F

τ =                         (2.3) 

where  τ = nominal retention time (d) 

           V = contact reservoir volume (ML) 

           F = flow rate (ML/d)  

However, these hydraulic conditions of plug flow are seldom achieved in practice. Diffusion 

and dispersion always exist, and turbulent regions (often including flow re-circulation and 

separation) cause the flow to be unpredictable. The result is a residence time distribution (RTD).  

 

2.4 COMBINATION OF HYDRAULICS AND KINETICS 

A plug flow reactor can be approximated by an infinite number of mixed flow reactors 

(Levenspiel, 1999). In the mixed reactor, the contents are well stirred and uniform throughout. 

Thus, the exit stream from the reactor has the same composition as the fluid within the reactor. 

Contact reservoirs can be modelled by a number of well-mixed flow elements organised in a 

certain way to simulate re-circulation or dead-volume problems (Figure 2-2) 

Inlet

C0 , F0

Outlet 
CR , FRV

h

-kCRV

 
Figure 2-2: Well-mixed reactor scheme 

 

Where  C0 = Inlet chlorine concentration (mg/L) 

 CR = Outlet chlorine concentration (mg/L) 

 F0  = Inlet flow rate (ML/d) 

 FR = Outlet flow rate (ML/d) 

 V = Volume of the water (ML) 

 h = Height of the water (m) 

 k = chlorine decay factor (/d) 

These unsteady balances for a well mixed reactor (Figure 2-2) can be written:  
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Chlorine:                              0 0
( ) - -=R

R R R
d C V F C F C kC V

dt
                                               (2.4)       

Volume:                                  0-= R
dV F F
dt

                                                              (2.5) 

for the case as here where the reacting species is in dilute solution. 

2.5 TRACER TEST 

Tracer tests are often used to determine the hydrodynamic behaviour of the contact reservoir as 

well as the residence time distribution. A pulse or step in tracer concentration at the inlet allows 

determination of the residence time distribution. The tracer species should be conservative, 

easily measurable and, of course, safe for human consumption (Ducluzaux, 1999). 

Several different techniques of tracing are used: 

•  the measurement of a tracer salt by electric conductivity since the beginning of the 

century (Ducluzaux, 1999). 

• the measurement of radioactive tracers by the radioactivity (Molinari, 1976). 

• the measurement of fluorescent tracers by in situ fluorometers (Molinari, 1976). 

• the measurement of chemical tracers by in situ chemical sensors (Ducluzaux, 1999). 

A fluorescent dye is rhodamine WT but it is not very stable in chlorinated water. Phloxine B is 

reported to be the most stable fluorescent dye. It is certified by the National Sanitation 

Foundation International under the condition that the concentration of the phloxine B liquid in 

drinking water does not exceed 0.1 µg/L (NSF International, 2000). The readings can be made 

directly on a continuous-flow or an individual sample without processing. An advantage is that 

a fluorometer can detect tracer concentration as low as 0.1 ng/L (Keystone Company, 2000). On 

the other hand, Ducluzaux described the advantage of the different ions (iodide, lithium) as a 

natural tracer, already present in the water, easy to measure with a chemical sensor (which has a 

precision of 0.01 µg/L), and not very expensive.  

 

Levenspiel (1979) explained that by comparing the residence time distribution curve for the real 

vessel with the curves obtained with different combinations of theoretical well mixed and plug 

flow reactors, it is possible to simulate the residence time distribution with a compartment 

model. Figures 2-3 and 2-4 illustrate a residence time distribution curve by an impulse injection 

for a plug flow vessel and a well-mixed vessel respectively. 
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Figure 2-3: Residence time distribution curve for a plug flow vessel by an impulse 

injection 
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Figure 2-4: Residence time distribution curve for a well-mixed vessel by an impulse 

injection 

2.6 COMPUTATIONAL FLUID DYNAMIC SIMULATION 

As van der Watt (2002) explained, some experiences have been made to simplify the 

representation of contact reservoirs, in order to achieve the desired outlet chlorine 

concentration. One method was to consider the chlorine concentration and the theoretical 
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residence time. Unfortunately the theoretical residence time distribution curve does not always 

give a deep understanding of the hydraulic behaviour of the contact reservoir. 

 

In the Computational Fluid Dynamics (CFD), the general conservation laws (conservation of 

mass and momentum) are applied to specific vessel geometries. The solution of a CFD analysis 

is uniquely characterised by the boundary conditions, overcoming the limit of the conventional 

approach explained in the previous paragraph.  

 

Leclerc et al. (1998) and Chataigner et al. (1999) compared CFD results with experimental 

residence time distribution curves. This comparison showed that CFD results agreed remarkably 

well with the conventional turbulence models, with errors in the residence time distribution 

curves ranging from 6.7 to 9.3%. These small errors proves than CFD can be used not only for 

qualitative, but also quantitative predictions. 

 

Van der Walt’s study (2002) used the FLO++ code (Le Grange, 1998) to simulate the turbulent 

flow patterns. The Navier-Stokes equations and the k-ε turbulence model were used to simulate 

turbulent flow. Chlorine transport was modelled by a convection-diffusion formulation with a 

sink term representing chlorine decay. The scalar transport equation in two dimensions is given 

by: 

( ) ( ) ( ) [( )( )] [( )( )]µ µ
ρ ρ ρ ρ

σ σ
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + + −
∂ ∂ ∂ ∂ ∂ ∂ ∂

t t

CX CY

C CC uC vC D D kC
t x y x x y y

      (2.6) 

Where   ρ = fluid density (kg/m3) 

µt = fluid turbulent viscosity (kg/m.s)  

σ = turbulent Schmidt number (-) 

D = turbulent diffusivity (m2/s) 

u, v = velocities in x- and y-directions (m/s) 

C = chlorine concentration (mg/kg) 

k = rate of chlorine decay (/s) 

 

The first term represents the unsteady chlorine concentration term, the second and third terms 

represent the convection of chlorine, the fourth and fifth terms represent the diffusion of 

chlorine and the last term represents the first order chlorine decay sink term. In his study, van 

der Walt concluded that the CFD is able to model the hydraulics and the chlorine decay 

accurately. 
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However this kind of modelling is too detailed and computationally intensive to be applicable 

for real-time control, so a simplified control model will be required. The CFD is also not 

suitable for on-line application. 

2.7 CONTROL OF WATER PROCESSES 

As Johnson et al. (1997) introduced, the most widely practised chlorination control is to inject 

an overdose of chlorine at the inlet to the contact reservoir and adjust to the desired free residual 

chlorine level in the effluent stream, by addition of sulphur dioxide or sodium bisulphite. 

However this method of control may not be optimal. They described reliable predictions of 

retention time distributions and the use of programmable logic controllers (which are not 

detailed), coupled with an understanding of chlorine disinfection kinetics, and so offered a 

potential for more efficient chlorine dosing. 

 

Other authors, Sérodes et al. (2001), created a methodology for developing decision-making 

tools for chlorine disinfection control: Chlorocast©. This methodology is based on the creation 

of a database for typical situations and the use of an artificial neural network. 

 

These methods work with a well known fixed kinetic factor and residence time distribution 

curve. However this kinetic factor depends on the temperature and the quality of the water, as 

well as the control input, the initial concentration of free residual chlorine in the flow, which 

enters the chlorine contact reservoir (Powell et al., 1999).  

 

The problem is that, during a year, this kinetic factor has to be recalculated, depending on the 

situation (dry season, rainy season, winter, summer). Moreover depending on the plant, it is not 

always possible to obtain a residence time distribution curve. 

 

2.8 EXTENDED KALMAN FILTER AND PARAMETER IDENTIFICATION 

The equations for the contact reservoir are multivariable and non-linear with a mixture of 

differential and algebraic equations (DAE), with state variable outputs (chlorine concentration), 

inputs (flow, level), associated variables (consumer demand) and physical parameters (chlorine 

decay factor). Algorithms that are suitable for real-time usage and based on successive updating 

of the model parameters are generally recursive. There is a large number of recursive 

identification algorithms described in the literature. Ogunnaike et al. (1995), Åström et al. 

(1995) and Ljung (1999) overview these techniques.  
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A popular technique used to solve the recursive problem is the Kalman filter. This technique, 

attributable to Kalman et al. (1960) solves the recursive estimation problem. It has been 

described by Catlin (1980) and Balakrishnan (1984).  

Chui et al (1987) reported that the Kalman filter has been designed to estimate the state vector 

in a linear model. If the model is non linear, a linearisation procedure can be performed in 

deriving the filtering equations; the Kalman filter obtained in this manner is called the extended 

Kalman filter (EKF). The EKF has found many important real-time applications, one of which 

is the adaptive parameter identification. The EKF thus can be used to identify, in real time, the 

chlorine decay factor by fitting the model outputs to observed chlorine levels. 

2.9 CONTROL 

2.9.1 Adaptive Control 

As defined by Isermann (1982), adaptive control systems adapt their behaviour to the changing 

properties of controlled processes and their signals. Many different proposals for adaptive 

control have been made in the past. However, their application has not been very successful, 

and somewhat unconvincing until the early 1970s. The development of cheaper and more 

reliable digital computers has meant that the field of adaptive control has been reactivated. 

Adaptive control algorithms have received much attention in recent years because good results 

have been given by some applications. Le Lann et al (1995) studied several adaptive control 

algorithms (adaptive PID, Self Tuning Controller, Model Reference Controller and Generalised 

Predictive Controller) on different types of extraction pilot plant. They obtained their best 

results with the Generalised Predictive Controller. 

 

2.9.2 Model Predictive Control 

The term Model Predictive Control (MPC) describes a class of computer control algorithms, 

which are used to find optimal control action settings by predicting their impact on the future 

output of the system (Garcìa et al., 1989). MPC technology was originally developed for power 

plant and petroleum refinery applications, but is now applied in a wide variety of manufacturing 

environments including chemical, food processing, automotive, aerospace, metallurgy, and pulp 

and paper.  The reason for its popularity can be attributed to three important factors: 

• Incorporation of an explicit process model into the control calculation. This allows the 

controller to deal directly with all significant features of the process dynamics. 

• The plant behaviour is considered over a period which extents to a future time horizon. 

This means that the effects of disturbances can be anticipated and removed, allowing 

the controller to drive the plant more closely along a desired future trajectory 
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• The process input, state and output constraints can be directly considered in the control 

calculation, so constraint violations are less likely. 

Hence MPC designs have the ability to yield high performance control systems capable of 

operating without expert intervention for long periods of time. 

 

Clarke et al. (1987) and Qin et al. (1997) described MPC algorithms. The future moves of the 

manipulated variables are determined by minimizing the predicted deviation from the set-point 

subject to operating within constraints. This optimisation is repeated at each sampling time 

based on updated information (measurements) from the plant. 

 

2.9.3 Dynamic matrix control 

Garcìa et al. (1989) reviewed different techniques emanating from MPC: Dynamic Matrix 

Control, Model Algorithmic Control, Inferential Control and Internal Model Control. The DMC 

algorithm is currently one of the most popular and widely used MPC algorithms, because it is 

simple, intuitive and allows a formulation of the prediction vector in a natural way. It is based 

on a linearised step response model called the convolution model to predict the effect of 

possible control actions. Such a strategy enables the model-based control to anticipate where the 

process is heading. 

 

Successful applications of DMC have been reported in the literature. Cutler et al. (1980) 

described the DMC algorithm and reported application to a fluid cracker. An algorithm based on 

the DMC has been developed by Mulholland et al. (1997) following the methods of Chang et al. 

(1983), and Morshedi et al. (1985). This algorithm has been applied to control the top and the 

bottom temperature of a semi-industrial distillation column. 

 

In a recent work, Guiamba (2001) examined modelling and control issues for a complex 

multivariable industrial operator training plant, and developed and applied an on-line method 

for adapting the controller to account for non-linearity. 
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CHAPTER 3  

THE CHLORINE CONTACT RESERVOIR 

CONSIDERED IN THIS STUDY 
 

This chapter presents the chlorine contact reservoir and the data collecting from the plant. It 

considers also the viability of using a tracer test to predict the residence time distribution of the 

chlorine contact reservoir. 

3.1 THE CONTACT RESERVOIR 

In the last stage of the water treatment process (Figure 1-3), the water is chlorinated with NaOCl 

and is stored in a reservoir, which is divided into two sections. This permits a sufficient contact 

time between the water and the chlorine for water disinfection. In addition it provides a holding-

time to allow any water quality problem to be corrected before the water enters the distribution 

network. Figure 3-1 is a view on the top of the reservoir, showing the inspection hole and the 

instrumentation room. 

 

 
Figure 3-1: View of the top of the reservoir 

3.1.1 Flow through the reservoir 

The flow is illustrated in Figure 3-2. From the treatment plant, water is received through a pipe 

where chlorine addition is continuous. Water is fed into two reservoir sections, but the ratio of 

the split is unknown. The levels are equal in both sections due to the interconnection of the 
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outlets. For operational reasons, the flow rate through the water treatment process preceding the 

reservoir is kept as steady as possible. At the exit of this reservoir, the treated water is 

transferred to the Durban Unicity buffer reservoirs according to the consumers’ demand. 

Gravity
aqueduct

1. 2.
Buffer
reservoirs

Umgeni Water Durban UnicityInanda 
dam

Water 
treatment 
plant

Measurements of the 
chlorine concentration and 
the flow rate in the inlet
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Southern 
Durban 
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Figure 3-2: Plan view of the Wiggins Water treatment plant 

 

The buffer reservoirs supply directly to consumers. When any of the buffer reservoirs reaches 

the minimum level, individual pumps and valves drawing from the Durban Unicity southern 

aqueduct are switched on. With many buffer reservoirs drawing water on demand, the water 

drawn from the Wiggins reservoir will follow the user demand profile (Figure 3-3). 
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Figure 3-3: User demand profile 
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However, several large pumps at the Wiggins works are also switched on periodically to 

transfer water to Durban Heights waterworks, which serves a different distribution area due to 

its greater altitude. When these pumps switch on, there is a noticeable step impact on the 

Wiggins outflow, with consequent decrease in level (Figure 3-4). 

Time

Outflow

Pumps on Pumps off

Inflow

Level

 
Figure 3-4: Illustration of the inflow, outflow and level in the reservoir 

                   

Depending on the difference between inflow and outflow, the water level inside the reservoir 

may rise or fall. The amount of chlorine required is dependent on the quantity of the water 

present in the reservoir, and the flow rate. The longer the residence time, the more chlorine 

required per unit of flow out of the reservoir. 

3.1.2 Geometry of the reservoir sections 

These reservoir sections are large: 116.5 m by 76 m. The wall height is 7 m but the baffles 

shown in Figure 3-2 are 2 m in height. The smaller baffle is 5 m in length, placed directly in 

front of the inlet; whereas the larger baffle is 48 m long situated in the middle of each section. 

The inlets of 1 m in diameter are positioned 1.5 m above the floor and the outlets of 3 m in 

diameter are from a trough in the floor. 

3.1.3 Instrumentation 

The inflow of the reservoir is measured by a crump weir and ultrasonic level device (Milltronic 

Multiranger Plus, accuracy: ± 0.25% of range, range is set to 900 mm). The total outflow of the 

reservoir is measured by magnetic flowmeters (Kent ABB, calibrated by positive displacement 
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tests on the storage reservoir, accuracy: ±0.5%). The inlet chlorine concentration to the reservoir 

is measured by an on-line chlorine analyser (Wallace & Tiernan, calibration against DPD 

method, accuracy: repeatable to 0.1 mg/L). The outlet chlorine concentration from the reservoir 

is also measured by an on-line chlorine analyser (Endress & Hauser, calibration against DPD 

method, accuracy: repeatable to 0.1 mg/L) (Figure 3-5). An ultrasonic level measurement device 

measures the level of the reservoir (Milltronic Multiranger Plus, calibrated against the survey 

detail of the reservoir and on empty distance, accuracy: ±0.25% of range, range used equal to 

7.5 m). 

 

 
Figure 3-5: On-line pH meter, Chlorometer at the exit of the reservoir 

 

A 4 to 20 mA driver board drives these circuits and provides an input voltage for an A/D 

converter scanned by a PC SCADA (Supervisory Control and Data Acquisition) system 

(ADROIT). This system processes the data, executes control loops and stores data at regular 

intervals to assist with short-term operational decisions as well as long-term planning.  

 

3.2 DATA COLLECTION 

The Adroit SCADA system stores data at 5 min intervals. Each data record of interest (inlet and 

outlet chlorine concentration, inflow rate, outflow rate and level for the entire reservoir) can be 

saved. Each month (from August 2001 to April 2002), at least one week of data were collected 

from the plant, analysed using Microsoft Excel and then directly imported to a Matlab file. 
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Figure 3-6 presents a typical set of data: 

• The inflow is maintained as steady as possible 

• The outflow exhibits the step characteristic forms that were explained in the section 3-1 

• The level rises when the valves shut and so the outflow rate becomes close to 0 ML/d, 

and drops off when the outflow is greater than the inflow. 
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Figure 3-6: Flows and level (25/08/01) 

Figure 3-7 shows the chlorine concentration and the level plotted for the same period of time. 
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Figure 3-7: Chlorine concentration and level (25/08/01) 
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Some of the treated water is used to back wash the filters every 2 h. As the flow is measured at 

the head of works, this will not show on the flow meter. However the chlorine dosing does not 

account for this fluctuation in flow, therefore spikes occur in the reservoir inlet chlorine 

concentration as shown in Figure 3-7. 

 

The main problem is that there is no apparent correlation between the inlet chlorine 

concentration variations and the outlet chlorine concentration variations. Indeed, with a fixed 

inlet flow rate and a certain range of level and inlet chlorine concentration, the outlet chlorine 

concentration shows variations, which seem unpredictable. Furthermore, the fact that available 

data are for the whole reservoir and not for each section (which do not have the same geometry) 

adds to difficulties in predicting the outlet chlorine concentration. 

 

Considering that August is during the cold season in Durban, another set of data during January 

(hot season) is shown in Figures 3-8 and 3-9. 
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Figure 3-8: Flow rates and level (15/01/02) 
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Figure 3-9: Chlorine concentration and level (15/01/02) 

 

The data from the hot season, which is also the rainy season are much more stable. This can be 

explained by the fact that, as it is the rainy season, Inanda dam is full and a constant inflow can 

be taken from this dam. As it is the summer and the holiday season, people are using more 

water but always at the same period of the day so the outflow is subject to constant variations. 

On the contrary, in winter, people used less water and not regularly so the outflow is much more 

variable. 

3.3 TRACER TEST 

The reservoir sections are poorly designed from the point of view of chlorine concentration 

control: they are large with just two baffles 2 m in height, whereas the level can reach 7 m. 

Moreover, they do not have the same geometry and the measurement available for the inlet flow 

is before the division of the main inlet flow into two by-flows so the inflow for each one is 

unknown.  To gain an understanding of the hydrodynamic behaviour of these two sections, 

tracer tests were considered.  

 

Two methods are available as explained by Environment Quebec (2002)  

• Constant rate injection 

• Pulse injection 
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The most stable fluorescent dye with chlorinated potable water is phloxine B, but it is a very 

expensive dye. Given that the reservoir sections are very large, a large amount of tracer would 

have been required in carrying out a tracer test.  In addition, with changes in the outflow being 

made frequently, thereby making it impossible to hold steady state for the necessary duration of 

the test, the idea of doing tracer tests was finally abandoned. To gain an understanding of the 

physical processes appearing in both reservoir sections, a Computational Fluid Dynamic 

simulation was considered since this is now able to give results very close to reality. 
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CHAPTER 4  

COMPUTATIONAL FLUID DYNAMIC MODELLING 
 

In this chapter, the behaviour of the reservoir is simulated using the Computational Fluid 

Dynamic, software FLUENT. This study led to the creation of compartment models, which are 

not computationally intensive but are likely to give a good approximation of the system. 

 

Computational Fluid Dynamics (CFD) seeks to find a solution to the fundamental equations, 

which describe the motion of fluids. Early CFD code was often written for specialist 

applications and its applicability was limited to the specific problem for which it was created. 

Many general purpose CFD packages are now commercially available. The University of Natal 

uses FLUENT (V4.5 and V5.5) from Fluent Inc (Lebanon, New Hampshire, USA) for CFD 

software.  

 

However the FLUENT software is not actually designed to be suitable for on-line control 

application. Within the framework of this project, the aim of doing CFD modelling was to gain 

an understanding of the physical processes in the chlorine contact reservoir, and not to create a 

very accurate model for predicting the outlet chlorine concentration at the exit of the reservoir. 

The insight gained from the CFD model was subsequently used to guide the development of 

simplified compartment model for control purposes. 

4.1 EQUATIONS SOLVED 

The chlorine contact reservoir is a turbulent system. Turbulent flows are represented by the 

partial differential Navier-Stokes equations for mass, momentum, energy, and species 

conservation. To solve these equations, FLUENT divides the space in which the problem is 

posed into a solution mesh, which consists of a large number of cells, which fill the entire space. 

The partial differential equations are discretized over the mesh and then solved iteratively. A 

FLUENT simulation is considered converged when all governing equations are balanced within 

an acceptable value of error at each point in the solution domain. In this case, the simulation 

was considered well converged when the normalized residuals (velocities, pressure, turbulence, 

eddy dissipation, viscosity, chlorine concentration) were of the order of 1x10-5. In this work, a 

k-ε turbulence model was chosen. This model is a semi-empirical one that has been proven to 

provide engineering accuracy in a wide variety of turbulent flows. This involves two additional 

partial differential equations for the turbulent kinetic energy (k) and its rate of dissipation (ε). 
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The water level in the reservoir is time dependent. Hence the time dependent option in 

FLUENT V4.5 that allows a simulation of varying fluid depth using a deforming mesh was 

used. 

4.2 COMPUTATIONAL GEOMETRY 

4.2.1 The reservoir  

The dimension of the reservoir were provided in Section 3.1.2 and shown in Figures 3-1 and 3-

2. For each section of the reservoir, computational domains were built with the dimensions of 

the real section. The features included were the base, vertical walls and baffles, inlets and 

outlets. To avoid the complexities of a free surface model, the water surface was modelled as a 

rigid horizontal frictionless surface. A deforming mesh was used to represent the change in level 

as the reservoir filled or emptied with time. This model was not able to represent the situation 

when the water level dropped below the top of the baffle walls. 

 

To create the deforming mesh, FLUENT needs different meshes with different heights, 

assuming that the level of water is always equal to the height of the modelled section. An 

intermediate time calculates an intermediate level by linear interpolation. Therefore, 9 

computational domains were built with the same area and different heights for each, which were 

extracted for the maxima and the minima of the level during 1.6 days. Figure 4-1 shows the real 

variation of the level during 1.6 days in August 2001 and the linear interpolation. The inflow is 

taken constant at 100 ML/d. 
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Figure 4-1: Level linearisation from 9h00 of 25th August 2001 to 20h00 of 26th August 2001 
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4.2.2 Mesh of the computational domain 

In order to obtain a converged solution to the problem posed, the computational mesh accuracy 

has to be considered. In general, the finer the mesh, the more accurate the model is expected to 

be. However the dimensions of each section are very large, and increasing the number of cells 

in the mesh will increase the computational time, which must be considered in the light of the 

limited objectives of the CFD model. 

 

A simple mesh was built with a spacing of 1 m between each node, which produced a mesh 

containing 55 932 cells, which could be solved in a reasonable time on the available computer. 

Figure 4-2 shows the mesh for section 1 and the Figure 4-3 shows it for the section 2. 
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Figure 4-2: The mesh of the section 1 of the reservoir  
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Inlet

OutletBaffles

116.5 m
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Figure 4-3: The mesh of the section 2 of the reservoir  

4.3 INITIAL AND BOUNDARY CONDITIONS 

4.3.1 Boundary conditions 

Fluent provides a standard set of boundary conditions, which can be used to represent inlets, 

outlets and walls. 

4.3.1.1 Inlet  

The FLUENT inlet velocity boundary condition was used to define the flow at the inlet. The 

area of the two reservoir are equal, the outlets are connected and hence the water levels in the 

two sections are equal, it was assumed that the flow entering each section was equal to half of 

the overall flow.  The normal flow rate is equal 100 ML/d for this set of data, which means 

50 ML/d to each section, i.e. 0.6365 m/s entering through 1 m diameter pipes. 

4.3.1.2 Outlet 

The outlets (3 m by 3 m) are pits sunk into the floor of the reservoir. The outlet flow rates were 

calculated by mass balance bearing in mind the rate of change of volume in the sections. 
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4.3.1.3 Wall 

The heights of the wall are 7 m but the baffle walls are equal to 2 m in height. At the surface of 

the walls, the flow rate is equal to 0 m/s. 

4.3.2 Initial conditions 

Time dependent partial differential equations require specifications of initial conditions 

throughout the domain, and boundary conditions for the entire solution period; but initial 

conditions of the problem are unknown because they are determined by the entire previous 

history.  

 

To get round this problem, a steady state solution was obtained for the height and the inflow set 

in Section 4.3.1.1. Thus the steady state was considered as the initial conditions for the 

simulation. Although this steady state will not be an accurate representation of conditions at the 

start of the simulation, the influence of the initial conditions decreases as the solution time 

increases. 

 

4.4 SIMULATION RESULTS 

A simulation of the flow pattern was first undertaken, then FLUENT is used to simulate the 

chlorine decay inside both sections of the reservoir. 

4.4.1 Flow patterns 

The section height of all the plan views shown is equal to 3 m (ie. the view is a slide through the 

reservoir at the height of 3 m independently of the water level, if the water level is below 3 m, 

the velocity field at the free surface is shown). Since the reservoir sections never operate at 

steady state, this solution (Figure 4-4) cannot be taken as a detailed representation of the flow 

pattern in practice. However it probably represents some kind of average behaviour of the flow. 

It indicates the presence of preferred pathways (the light areas), particularly in section 1, for 

flow through the reservoir, creating relatively stagnant volumes (dark areas). The numbers 1 and 

2 refer to the section 1 and 2 of the reservoir respectively.  
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0 .6 5 6 3
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In le ts

O u tle ts
B a ffle s  

Figure 4-4: Steady state of the reservoir simulated by FLUENT (level = 2.8 m) 
 

Starting from the initial steady state solution, the time dependent simulation evolved over a 

period of 1.6 d as indicated in Figure 4-1. Thus, it was hoped that the dynamic state would 

approach the state of the reservoir in reality. Figures 4-5 to 4-9 show the variation of flow 

patterns (at the height of 3 m, or less) in the sections when the level increases with time: from 

2.75 m (0.5 d)(Figure 4-5) then 3.83 m (0.7 d) (Figure 4-6) to 4.77 m (1.3 d)(Figure 4-7) and 

then decreases to 4.09 m (Figure 4-8) to finally reach 3.5 m (Figure 4-9). This particular period 

of time has been chosen because the simulation has already calculated one rise and one drop of 

level and so the influence of the initial condition should have largely disappeared (the disc with 

the dissertation contains diagrams of the 44 simulations over the 1.6 d period)  
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Figure 4-5: Plan view of both sections (level = 2.75 m) 
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Figure 4-6: Plan view of both sections (level = 3.83 m)   

 

0 m/s

0.6365 
m/s

0 m/s

0.6365 
m/s 1

Inlets

Outlets

2

3
4

5

0 1.6

Level(m)
Present 
level

Time (d)  
Figure 4-7: Plan view of both sections (level = 4.77 m) 
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Figure 4-8: Plan view of both sections (level = 4.09 m) 
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Figure 4-9: Plan view of both sections (level = 3.5 m) 

As shown in these figures, when the level increases, the stagnant volumes increase in certain 

areas, whilst in the whole area the flow rate decreases. That is the consequence of the rising of 

the level: as the inflow is constant, the outflow is smaller so the water experiences a longer 

residence time, and the flow rates drop. As the level decreases, the reverse happens. 

4.4.2 Chlorine decay simulation 

The chemical reaction modelling facilities of FLUENT were used to simulate the behaviour of 

the chlorine in the reservoir sections. At the inlet, two species were defined: water and chlorine. 

The inlet chlorine concentration has been approximated by a piecewise linear representation as 

shown in Figure 4-10 as it was done for the level. 
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Figure 4-10: Chlorine concentration linearisation from 9h00 of 25th August 2001 to 20h00 

of 26th August 2001 
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For the CFD simulation, the chlorine decay consumption was modelled using a first order decay 

with a kinetic factor equal to 2 d-1. The CFD simulations were repeated with kinetic factors of 

0.5, 1, and 1.5 d-1. Figures from 4-11 to 4-15 illustrate the FLUENT simulation with k = 2 d-1. 
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Figure 4-11: Plan view of both sections (outlet chlorine concentration: 

section 1 = 0.817 mg/L; section 2 = 0.812 mg/L) 
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Figure 4-12: Plan view of both sections (outlet chlorine concentration:  

section 1 = 0.622 mg/L; section 2 = 0.709 mg/L) 
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Figure 4-13: Plan view of both sections (outlet chlorine concentration: 

section 1 = 0.762 mg/L; section 2 = 0.661 mg/L) 
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Figure 4-14: Plan view of both sections (outlet chlorine concentration: 

 section 1 = 0.715 mg/L; section 2 = 0.662 mg/L) 
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Figure 4-15: Plan view of both sections (outlet chlorine concentration: 

 section 1 = 0.779 mg/L; section 2 = 0.773 mg/L) 
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As it was already seen, the flows through the two sections have preferred pathways. In those 

parts of the volume which are not on these preferred paths, the water experiences longer 

residence times, which causes the chlorine concentration to be depleted. The graphs describing 

the flow pattern or the chlorine concentration inside the sections consequently show similar 

features. The same conclusion can be reached: as the level increases, the chlorine concentration 

decreases in certain areas, whilst in the whole area the average of the chlorine concentration 

decreases (as the level increases, the residence time of the water increases, giving the chlorine 

more time to react, first order decay model). As the level decreases, the reverse happens. The 

outlet chlorine concentrations predicted by FLUENT can be compared with the real data (Figure 

4-16). 
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Figure 4-16: Comparison between the predicted outlet chlorine concentration and the data 

 

On these curves, it was observed firstly that the two sections are not giving the same outlet 

chlorine concentration. At 0.5 d and at 0.9 d of the simulation, the two curves follow the same 

trend but at 1.3 d, they are completely divergent. And this cannot be explained by the level 

variation because at this precise time, the level is continuously increasing or decreasing.  These 

differences are certainly due to the different geometry of the two sections. 

 

As it has been assumed that the inflow is equally divided between the two sections, the average 

outlet chlorine concentration is the average of the two values obtained for the outlet from each 

section. The second observation was that the kinetic factor k is probably too high (the prediction 

are below the data, which means than too much chlorine has disappeared).   
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Simulations were conducted with different values for the kinetic factor k (0.5; 1; 1.5 and 2 d-1). 

Figure 4-17 shows the average outlet chlorine concentration for each value of the kinetic factor. 
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Figure 4-17: Comparison of the predicted outlet chlorine concentrations with different 

values of k 

 

The best results are obtained with the kinetic factor equal to 1.5 d-1 (which was the average 

value found by a laboratory study, which was conducted after the simulations had been 

performed (Kandasamy and Govender, 2002)). Although the predicted outlet chlorine 

concentration is of the same order as the measured data, it does not match it perfectly. Others 

influences, for example the variation of chlorine loss with splashing at the entries of both 

sections, or with the water quality need to be considered.  

4.5 SIMPLIFIED COMPARTMENT MODEL 

Even if CFD modelling gave correct results and a good prediction of outlet chlorine 

concentration, this kind of modelling is too detailed and computationally intensive to be 

applicable for real-time control, so a simplified model is required. The FLUENT software is 

also not designed to be suitable for on-line application. Thus it was planned to create 

compartment models using the MATLAB software.  

 

Because of the difficulties associated with undertaking tracer tests (Section 3.3), tracer tests 

were simulated with CFD modelling to obtain residence time distribution curves. By 
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interpreting theses curves, different combinations of compartments (well mixed and plug flows) 

likely to give a good approximation of the system were found. 

4.5.1 Tracer test simulation using CFD 

To simulate a tracer test in FLUENT, a certain amount of a non-reactive species is added at t = 

0, for just one time step. For this case, the chlorine concentration was equal to 1g/L for the first 

time step only. The result of the test is presented in figure 4-18. Initial and boundary conditions 

are as defined in Section 4.4. 
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Figure 4-18: Impulse tracer test simulation using CFD 

4.5.2 Interpretation 

The two peaks shown in figure 4-18 for each section were explained with two different 

combinations of well-mixed flows and plug flows.  

 

The first combination is based on dividing each section into two types of compartments. The 

first type lies on the preferred path of flow, and will be termed the through-flow compartment or 

volume.  The second type falls off the preferred path. Thus, it does not interchange water 

directly with the inlet and outlet, but rather with the through-flow volume.  This situation is 

similar to flow experienced by the backwater of a coastal lagoon, where water flows in and out 
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as a result of the action of the tides, but there is no through flow.  For this reason, this type of 

compartment will be called a tidal-flow compartment or volume (Figure 4-19). 

Through-flow 
compartments

Tidal-flow 
compartments 

Inlet Outlet

 
Figure 4-19: Four-compartment model 

 

For the second combination, it was assumed that the second peak that appears in the simulation 

was due to a recycle going through a dead-time zone (the dead zone has been simulated by a 

plug flow). And, as there is a little time delay before the first peak, a well mixed compartment 

has been positioned before the re-circulation. (Figure 4-20).  
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Figure 4-20: Compartment with plug-flow re-circulation 

 

Finally, these two models were created using MATLAB programming to predict and control the 

outlet chlorine concentration. In the next chapter, these two compartment models are modelled 

with equations and solved using an extended Kalman filter.  
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CHAPTER 5  

PROCESS MODELLING 
 

 

This chapter describes the different compartment models, and how they are solved within an 

extended Kalman filter. Then the extended Kalman filter is tuned, and the results concerning the 

open-loop simulation are presented. 

5.1 COMPARTMENT MODELS 

If a mathematical model can be developed to represent the variation of the chlorine 

concentration in the reservoir, by taking the anticipated user demand patterns into account, the 

model could be used to calculate the chlorine dose required to provide the correct residual 

concentration.  

 

Guided by the CFD modelling, various compartment models have been generated to simulate 

the behaviour of the plant, namely, a four-compartment model and a six-compartment model. A 

one-compartment model has also been considered for the simplicity of implementation on-line. 

Chlorine decay in the model was represented by first order kinetics.  

5.1.1 Four-compartment model 

This model was the first one studied. As described in Section 4.5.2, two different kinds of 

volume have been considered for each section of the reservoir: the through-flow compartment 

and the tidal-flow compartment. Thus 4 compartments were modelled (Figure 5-1). The 

fraction, α, of the total feed flow that enters compartment 1 of the reservoir, has been taken 

equal to 0.5 (as in the FLUENT simulation, Section 4.3.1.1). 
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Figure 5-1: Four-compartment model 

 

where   F0 = inlet flow (ML/d) 

 C0 = inlet chlorine concentration (mg/L) 

 FR = outlet flow (ML/d) 

 CR = outlet chlorine concentration (mg/L) 

 hR  = pressure at the point where F1R and F2R are mixed (m)  

hi    = height of water in the compartment i (m) 

Ai   = area of the liquid surface i (m2) 

Ci  = chlorine concentration of compartment i (mg/L) 

Fij = flow from compartment i to j  (negative if the flow goes from j to i ) (m3/d) 

k   = kinetic factor (d-1) 

 

• Model differential equations 

Volume balances: 

1
1 0 13 1R

dhA F F F
dt

α= − −              (5.1) 

2
2 0 24 2(1 ) R

dhA F F F
dt

α= − − −              (5.2) 

3
3 13

dhA F
dt

=                (5.3) 

4
4 24

dhA F
dt

=                (5.4) 
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Mass balances: 

For the flows, we need to consider the direction of flow. The following equation uses maximum 

and minimum functions to describe this phenomenon.  

1 1
1 0 0 13 1 13 3 1 1 1 2 1 1 1

1 1
1 1 1 1 0 0 13 1 13 3 1 1 1 2 1 1 1

1
1

max( ,0) min( ,0) max( ,0) min( ,0)

so

max( ,0) min( ,0) max( ,0) min( ,0)

and  can be replaced by Equatio

R R

R R

dC hA F C F C F C F C F C kAC h
dt

dC dhA h AC F C F C F C F C F C kAC h
dt dt
dhA
dt

α

α

= − − − − −

+ = − − − − −

n 5.1 thus

 

1
1 1 0 0 13 1 13 3 1 1 1 2

1 1 1 1 0 13 1

max( ,0) min( ,0) max( ,0) min( ,0)

               ( )

R R

R

dCA h F C F C F C F C F C
dt

kA C h C F F F

α

α

= − − − −

− − − −
      (5.5) 

The same reasoning can be made for each compartment: 

2
2 2 0 0 24 2 24 4 2 2 2 1

2 2 2 2 0 24 2

(1 ) max( ,0) min( ,0) max( ,0) min( ,0)

               ((1 ) )

R R

R

dCA h F C F C F C F C F C
dt

kA C h C F F F

α

α

= − − − − −

− − − − −
      (5.6) 

3
3 3 13 1 13 3 3 3 3 3 13max( ,0) min( ,0)dCA h F C F C kA C h C F

dt
= + − −          (5.7) 

4
4 4 24 2 24 4 4 4 4 4 24max( ,0) min( ,0)dCA h F C F C kA C h C F

dt
= + − −          (5.8) 

 

• Model algebraic equations 

Pressure balances (the function sgn determines the sign of the expression in brackets): 

13 13 1 3 1 3sgn( )F h h h hβ= − −              (5.9) 

24 24 2 4 2 4sgn( )F h h h hβ= − −            (5.10) 

1 1 1 1sgn( )R R R RF h h h hβ= − −            (5.11) 

2 2 2 2sgn( )R R R RF h h h hβ= − −           (5.12) 

The flow coefficients for reservoir compartment interconnection β1R, β2R, β13 and β24 are set as 

high as possible (100 ML/(d m) ) to balance the levels almost instantly. 

 

Mass balances: 

1 2R R RF F F= +              (5.13) 

1 1 2 1 2 2 1 2max( ,0) min( ,0) max( ,0) min( ,0)R R R R R RF C F C F C F C F C= + + +                       (5.14) 
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5.1.2 Six-compartment model 

The data logged by the Waterworks SCADA system are for the whole reservoir, and are not 

available for each section of the reservoir. In a second approach, the individial sections are not 

considered in detail but as one hypothetical reservoir, allowing for re-circulation flow. The six-

compartment model consists of two well-mixed flows and one plug-flow recycle. However, a 

plug-flow involves dead-time, which is difficult to insert in a system containing differential and 

algebraic equations. Therefore, the plug flow has been approximated by four mixed 

compartments in series (Figure 5-2). Where α is the fraction of the outflow from the 

hypothetical compartment (compartment 2) which goes directly to the exit. 

 

F0
1. 2.

6. 4.

Mixing

point

F6M

F1M

(1-α)F2S

F34F45F56

F2S αF2S=FR

F1M+F6M

5. 3.

 
Figure 5-2: Six-compartment model 

 

• Model differential equations 

 

Volume balances: 

1
1 0 1= - M

dhA F F
dt

            (5.15) 

2
2 2 1 6( )S M M

dhA F F F
dt

= − +            (5.16) 

3
3 2 34(1 ) S

dhA F F
dt

α= − −            (5.17) 
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4
4 34 45

dhA F F
dt

= −                         (5.18) 

5
5 45 56

dhA F F
dt

= −               (5.19) 

6
6 56 6M

dhA F F
dt

= −                (5.20) 

 

Mass balances: 

As was done previously (for equation 5.5): 

1
1 1 0 0 1 1 1 1 1 1 0 1( )dCA h F C F C kA h C C F F

dt
= − − − −          (5.21) 

A simplification can be made:  

1
1 1 0 0 1 1 1 1( )dCA h F C C kA h C

dt
= − −           (5.22) 

 

The same reasoning can be used for each compartment: 

CM = chlorine concentration at the mixing point (Figure 5-2). 

2
2 2 1 6 2 2 2 2( )( )M M M

dCA h F F C C kA h C
dt

= + − −          (5.23) 

3
3 3 2 2 3 3 3 3(1 ) ( )S

dCA h F C C kA h C
dt

α= − − −               (5.24) 

4
4 4 34 3 4 4 4 4( )dCA h F C C kA h C

dt
= − −              (5.25) 

5
5 5 45 4 5 5 5 5( )dCA h F C C kA h C

dt
= − −              (5.26) 

6
6 6 56 5 6 6 6 6( )dCA h F C C kA h C

dt
= − −              (5.27) 

 

• Model algebraic equation 

Pressure balances: 

1 1 1 2 1 2sgn( )M MF h h h hβ= − −              (5.28) 

34 34 3 4 3 4sgn( )F h h h hβ= − −                  (5.29) 

45 45 4 5 4 5sgn( )F h h h hβ= − −                  (5.30) 

56 56 5 6 5 6sgn( )F h h h hβ= − −                  (5.31) 

62 62 2 6 6 2sgn( )F h h h hβ= − −                  (5.32) 
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All flow coefficients for reservoir compartment interconnections are equal to 100 ML/(d m) , 

to balance the model almost instantly. 

 

Mass balances: 

2R SF Fα=                       (5.33) 

1 6 1 1 6 6( )M M M M MC F F C F C F+ = +              (5.34) 

5.1.3 One-compartment model 

In order to implement the model on-line, the reservoir has been considered as a single 

compartment (Figure 5-3). 

 

C0, F0

CR, FR

h1

C1

 
Figure 5-3: One-compartment model 

 

• Model differential equations 

Volume balance: 

1
1 1 0

dhA F F
dt

= −             (5.35) 

Mass balance: 

1
1 1 1 0 1 1 1 1( )dCA h F C C kA h C

dt
= − −           (5.36) 

 

• Model algebraic equation 

Mass balances: 

1RF F=              (5.37) 

1RC C=              (5.38) 
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5.2 EXTENDED KALMAN FILTER 

All of the mathematical models described above are non-linear with a mix of differential and 

algebraic equations (DAE). The kinetic factor k is an unknown parameter, and it is needed by 

the model to represent the outlet chlorine variation. The Kalman filter is a stochastic filter that 

allows the estimation of the states of the system based on a linear model. The extended Kalman 

filter (EKF) uses local linearisation to extend the scope of the Kalman filter to systems 

described by non-linear ordinary differential equations (ODE). This scheme has been applied to 

the state and parameter estimation using models described by ODEs.  

5.2.1 Linearisation of DAEs 

By applying Taylor series expansion and truncating after the first order term, the process model 

is linearised taking into account the DAE nature of the models. The differential equations can be 

re-written in this form: 

dy f y z
dt

= ( , )              (5.39) 

As well as the algebraic equations: 

0 g y z= ( , )              (5.40) 

where y is the vector of state variables, and z the vector of additional variables used in the 

equations. 

 

The EKF algorithm is detailed in Appendix A. The Jacobian is calculated assuming that f and g 

functions are differentiable in their arguments. Notice that for a local linearisation a perturbation 

method is used in the EKF algorithm. The Jacobian matrices are re-evaluated at every iteration 

by perturbing each variable in turn, thus the values of each element of the matrices change 

slowly as the process moves to a new operating point. A good approximation of the initial 

operating point is required to accelerate the convergence. The developed EKF algorithm has the 

advantage of reducing the problem of singularity since both excess equations and excess 

variables may be specified. The solution simply achieves the best least squares fit to this 

specification. Where there is no reason to change an excess variable, it is simply left at its 

original value. 

 

The linear model obtained has the form given by equation A.6 (see extended Kalman filter 

algorithm in Appendix A) as: 

 

0

0 0
A Bfy y

z h zE
    = +    

   
                       (5.41) 
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5.2.2 Discrete model 

Because discrete time formulations are most especially suited to computer simulation of process 

behaviour, a discrete-time model of the process based on the linear model, and the relationship 

of model states to the measurements wt are respectively given by equations A.3 and A.4 as 

follows (the intermediate steps are described in Appendix A, Equation A.7 to A.10): 

 

t t t t t tx A x B u+∆ = +             (5.42) 

=t t tw C x              (5.43) 

where x is the state vector, u the input vector of independent variables, t represents the time and 

w the system output. C is an observation matrix while A and B are matrices of appropriate 

dimensions (n x n and n x m respectively, for an n-dimensional state and an m-dimensional 

input). They typically correspond to values of physical coefficients and property constants. 

5.2.3 Kalman filter 

With the equations 5.42 and 5.43, the transient response of the model can thus be founded using 

the Kalman filter. The equations 5.42 and 5.43 can be augmented as follows: 

 

t t t t t t t tx A x B u δ+∆ +∆= + +            (5.44) 

t t t tw C x µ= +             (5.45) 

 

where δ and µ are process and measurement noise contributions acting on the states and 

measured outputs respectively. They result from both measurement imperfections and 

disturbances affecting the process. They are considered to be random variables with normal 

distributions and zero means, with covariances E: 

 

}{E T Rδ δ =                          (5.46) 

}{E T Qµ µ =                          (5.47) 

 

and for uncorrelated δ and µ: 

 

}{ [ ]E 0Tδ µ =                          (5.48) 

The Kalman filter interpretation of this system taking into account the expected errors, is that 

the filter gain K, is calculated on each time step for adjusting x as follows: 
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1T T

t t t t t tK M C C M C R
−

 = +                                    (5.49) 

[ ]ˆt t t t t t t t t tx A x B u K w C x+∆ = + + −                       (5.50) 

[ ] T
t t t t t t tM A I K C M A Q+∆ = − +                       (5.51) 

 

where ˆ tw represents the equivalent set of measurements, Mi is the filter covariance matrix 

(initially small and diagonal), R and Q are usually diagonal. Higher prediction errors Q relative 

to observation errors R force the filter to follow observations more closely, whilst specifying 

higher observation errors R makes the model less sensitive to observations. 

 

The initial conditions can be set so that x0 is what we guess the parameter vector to be before we 

have seen the data, and M0 is the initial covariance matrix, which reflects the confidence in this 

guess. 

 

Equation 5.50 shows that the estimate xi+1 is obtained by adding a correction to the prediction of 

xi+1 based on xi according to the model. The correction term for the model parameter vector is 

thus proportional to the prediction error (difference between the measured value of ˆ tw and the 

prediction of ˆ tw ) based on the previous estimate. The components of the Kalman filter gain 

matrix Ki are weighting factors that introduce an optimal correction into the integration cycle. 

 

Notice that this form (equations 5.49 to 5.51) allows A and B to vary in time. This provides a 

way to handle non-linearities, since, as the process moves to a new operating point, elements of 

these matrices will change.  

 

5.3 PROGRAM 

MATLAB software was chosen to test the EKF algorithm. Indeed MATLAB is known for its 

efficiency concerning the matrix manipulation. The original MATLAB version of the extended 

Kalman filter was written by Mulholland (2001). The program is in Appendix C (for the six-

compartment model). A table translates the symbols used in theory to their equivalents in the 

program in Appendix B. A simplified flow diagram illustrates the program in Figure 5-4. 
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Yes

pcmove
>

pcmove_tolerance

No

No

Get plant data from file

Time loop

t = t+dt

Init
=
1

Initialisation at t=0
of all variables

Set the number of 
compartments C

Get plant data for this time

Init
=
1

Yes

Reevaluate = 0
Check percent of range (pcmove) to tell 
if the Jacobians should be re-evaluated

Yes
Reevaluate

=
1

Selection of variables and observations
Setting of observation errors and ranges

1.

8.

7.

6.

5.

4.

3.

2.

Optional parameter list to control 
solution

Initialisation for M matrix
Set  ε for sensitivity

Init =1
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t 
< 

t_final 

No 

YesReevaluate 
= 
1 

Re-evaluation of matrices A, 
B, C, D, At, Bt and Ct (cf. 

equation 6.41 to 6.45) for the 
Kalman filter algorithm 

Kalman filter algorithm 

Clip new predictions to maximum or 
minimum if they exceed range value 

Error calculation 
Store values for plotting 

Yes

Plot 

10. 

14. 

13. 

12. 

11. 

Setting of equations  9. 

 
Figure 5-4: Simplified flow diagram of the program 

 

The code allows easy alteration of compartment model structures.  

5.3.1 Model initialisation (Step 1) 

The operator sets the value of the optional parameters for the control solution. Equation 5.52 

defines the measurement sensitivity ε: 

Fractional error squared expected in the model=
Fractional error squared expected in the measurements

ε           (5.52)  

 

It is used to set the ration between the elements in the normalised Q and R matrices of the EKF, 

The initialisation of the matrix M (covariance matrix) is also done here (Equation 5.49). The 

parameter Init is set to 1 to allow an initialisation of all variables on the first iteration of the 

simulation. 
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5.3.2 Present operating conditions (Step 2) 

The data are read from another file, which is presented as a data matrix with the time in the first 

column and each measurement in additional columns (inlet and outlet chlorine concentrations, 

inlet and outlet flow rates, level). 

5.3.3 Variables initialisation (Step 3) 

If it is the first iteration of the simulation, an initialisation of all the variables is done. The 

operator specifies the number of compartments C. 

5.3.4 Data storage (Step 4) 

For an easier reading of the program, each variable is stored from the data matrix (step 2) in a 

variable with a specific name. 

5.3.5 Re-evaluation flag setting (Steps 5 to 7) 

If it is the first iteration, the Reevaluate flag is directly set to 1, to force the calculation of the 

first Jacobians. After the first iteration, the Reevaluate factor is set to 0, and the program checks 

the percent of ranges moved since the last step to decide if the Jacobians must be re-evaluated or 

not.  

5.3.6 Variables setting (Step 8) 

Parameters such as the expected error in individual measurements are set. 

5.3.7 Equations setting (Step 9) 

The same is done for the equation system. Thus, it is possible to build all the necessary matrices 

for the extended Kalman filter from these two storage matrices. Moreover, only this part has to 

be changed between different models, allowing a clearer programming and time saving.   

5.3.8 Jacobians re-evaluation (Step 10) 

If needed, the Jacobians are re-evaluated. 

5.3.9 Kalman filter algorithm (Steps 11 to 13) 

The theory is translated into the MATLAB language. To facilitate the reading of the program, 

the Table in Appendix B translates the symbols used in the theory to their equivalents in the 

program. The calculated values are clipped to within constraints, and the error between the 

predicted outlet chlorine concentration and the data is calculated as well as the error concerning 

the ability of the system to match all observations. 
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5.3.10 Plotting 

If the time loop is finished, the calculated values and the data are plotted. 

5.4 RESULTS 

5.4.1 Residence time distribution 

All of the compartments in the different compartment models are defined by their water 

volumes. The water level changes but the cross sectional areas are fixed parameters. The 

effective cross sectional area of each compartment needs to be determined, so that the 

compartment models represent the real reservoir behaviour. For that, a tracer test simulation for 

each model has been undertaken with different cross sectional areas. The aim was to be closest 

to the tracer test simulation done with the CFD (Figure 4-18). 

 

 ε (measurement sensitivity) is set to 1 and M (covariance matrix) is initialised to 0.01. The data 

are fixed: the inflow is set equal to the outflow ( =100 ML/d), and the height is set equal to 4 m. 

The kinetic factor k is set to 0 d-1 and thus the chlorine is considered as “the tracer”. The inlet 

chlorine concentration is equal to 0 mg/L except between t =  2 days and t = 2.035 days, when it 

is equal to 2 mg/L to simulate an impulse test (Figure 5-5). The outlet chlorine concentration is 

considered as a non-observed variable and has to be calculated by the extended Kalman filter. 
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Figure 5-5: Impulse tracer test simulation for the inlet tracer concentration 
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5.4.1.1 Four-compartment model 

If AS is the cross sectional area of one section of the reservoir (both sections are equal), and A1, 

A2, A3, and A4 are the area of compartment 1, 2, 3 and 4 respectively (see figure 5-1), the 

following equations can be written, with γ equal to the ratio factor of A1 to A3, and A2 to A4. 

1 3 2 4= + = +SA A A A A                                    (5.53) 

1 2 3 4                   and             (1 )γ γ= = = = −S SA A A A A A                          (5.54) 

Different values of γ have been tested. It is noted that γ  is the fraction of the total volume which 

is “active” in mixing the through-flow, whereas the remaining volume only has inflow and 

outflow in the tidal sense, as the levels in compartments 3 and 4 (which are internally mixed) 

equilibrate to the levels in compartments 1 and 2 respectively. The best result is obtained with γ 

= 0.85 (Figure 5-6). 
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Figure 5-6: Impulse tracer test simulation with γ = 0.85 (four-compartment model) 

 

In Figure 5-6, two peaks can be observed but the simulation does not match the FLUENT 

simulation closely (Figure 4-18). The first peak appears immediately after the impulse, due to 

the through flow compartments, which connect directly the inlet and the outlet. Consequently 

the model with the six compartments has been created (Section 5.1.2). The choice γ = 0.85 give 

the best results, and has been used below. 

5.4.1.2 Six-compartment model 

This model considers the entire reservoir, so the reservoir area will be considered as two times 

AS (cross sectional area of one section of the reservoir). The cross sectional areas of the four 
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compartments approximating the plug flow are equal. The main compartment (compartment 2) 

must have the biggest area (according to the FLUENT simulation (Figure 4-18), and the first 

compartment must have a sufficient area to create a time delay (Figure 5-2).  

 

The best results are obtained with: 

1 2 3 4 5 60.2                                                   0.2= = = = = =S S SA A A A A A A A A     (5.55) 

and with α (fraction of the flow which is going to the re-circulation compartments) equal to 0.4 

the flow coming from the main reservoir. The results are presenting in Figure 5-7. 
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Figure 5-7: Impulse tracer test simulation (six-compartment model) 

 

This simulation is closer to the FLUENT simulation (Figure 4-18). Consequently, this model is 

expecting to give better results. The noise after the second peak is due to the re-circulation. 

5.5 IDENTIFICATION MODE 

After all the physical variables of the mathematical system have been fixed, the EKF can be 

used to identify the kinetic factor k. The model is being supplied with actual plant measurement 

data varying in time, and the k variations that are found, are necessary to cause the model to 

predict the measured chlorine variations at the outlet, within the context of each model. 

Compared to water quality variations, relatively fast variations can occur as a result of water 

level variations (splashing at inlet, water path around baffles, etc). All of the data (inlet and 

outlet flow rates, inlet and outlet chlorine concentrations, and water level, measured on the plant 

over the period indicated below) are set as observed variables, and k has to be calculated as it 
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varies through this time period. k is initialised to 1d-1, which seems to be in the range of 

probable values. ε (measurement sensitivity) is kept equal to 1, the initial value of M 

(covariance matrix) is equal to 0.01.   

 

The results are presented for the three models; the data period is from 10/10/01 to 12/10/01. In 

this period the level undergoes a lot of variation but the inlet and outlet chlorine concentrations 

are steadier (Figure 5-8). 
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Figure 5-8: Kinetic factor value for the three models (October data) 

 

To explain the difference between the three curves, it is important to know that the kinetic factor 

k is directly linked to the volume. The total volume for the three models is the same but it is not 

shared out in the same way, and hence the water experiences different residence times, resulting 

in the kinetic factors being different. This also explains why the kinetic factor is not equal to 

1.5 d-1 as in the FLUENT simulation.  

 

It can be seen that the one-compartment model (which is the simplest one) has a kinetic factor, 

which does not vary a lot. On the contrary, the kinetic factor for the six-compartment model, 

which is the most complicated, varies a lot. Figure 5-9 illustrates a calculation of the kinetic 

factor for another period of time (from 15/03/02 to the 17/03/02), which presents the data with 

different characteristics: the level is almost stable but the inlet and outlet chlorine concentration 

varies a lot. 
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Figure 5-9: Kinetic factor for the three models (March data) 

 

For this set of data, the calculated kinetic factors seem to follow the same trend, which confirm 

the fact that the kinetic factor is linked to the compartment model. Indeed, when the level is 

almost constant (constant volume), the kinetic factor undergoes the same variations, and the 

order is similar to the set of data in October: the kinetic factor curve for the four-compartment 

model is above the curve for the six-compartment model, which is in turn above the curve for 

the one-compartment model.  

 

However the value range of each kinetic factor for the March data set is below the one 

calculated in October, which means that irrespective of the types of model, the kinetic value 

changes depending on the period of the year. This is probably due to the quality of the water. 

5.6 FORWARD MODELLING 

The forward model predicts the outlet concentration of chlorine, using the measurement of inlet 

and outlet flow rates, the inlet concentration of chlorine, and the level as observed values 

(Figure 5-10). For each model, a constant value for the kinetic factor (obtained from the 

identification model solution) is fixed as an observed variable, with a small observation error.  
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Figure 5-10: Real-time prediction using the same inputs as the process 

 

For each model u is the vector of observed data (inlet and outlet flow rates, level, inlet chlorine 

concentration, kinetic factor) and x is the outlet chlorine concentration. The real process 

represents the plant and the process model is the Kalman filter. So the observed and predicted 

outlet data can be compared. If the model is good the predicted data should follow the observed 

data. 

5.6.1 Tuning of the extended Kalman filter 

5.6.1.1 The ε factor (measurement sensitivity) 

This factor is the ratio between Q and R terms to force the EKF to follow more or less the 

observations (Equation 5.52). For each compartment model, five different values are studied for 

ε : 0.0001, 0.1, 1, 10, 1000 for the March data set. The values of the kinetic factor k are for the 

one-compartment model; the six-compartment model and the four-compartment model are 0.2 

d-1, 0.45 d-1 and 0.55 d-1 respectively. 

 

• Six-compartment model 

For this model, just ε equal to 0.1, 1, and 10 give results. For 0.0001 and 1000, the computation 

fails (Figure 5-11). 
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Figure 5-11: Observed and predicted outlet chlorine concentration with different values of 

the ε  factor for the six-compartment model (k = 0.2 d-1) 

 

The simulation with ε (measurement sensitivity) equal to 1 gives good results, which means that 

the fractional error squared expected in the model must be of the same order as the fractional 

error squared expected in the measurement. If one fractional error is greater than the other one, 

the predicted outlet chlorine concentration does not follow the trend of the observed outlet 

chlorine concentration as well. 

 

 

• Four-compartment model  

For this model, the simulation with ε (sensitivity measurement) values equal to 10 and 1000 

gives exactly the same results (Figure 5-12).  

 

It is noted that the four-compartment is simpler than the six-compartment model, so it converges 

more quickly (its computational time is smaller than the six-compartment model computational 

time) and it is more stable than the six-compartment model. It gives good results with a 

measurement sensitivity factor ε equal to 1, but the closest predicted outlet chlorine 

concentration is with a measurement sensitivity factor ε equal to 10.  
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Figure 5-12: Observed and predicted outlet chlorine concentration with different values of 

ε factor for the four-compartment model (k = 0.45 d-1) 

 

• One-compartment model 

For this compartment model as well, the values for ε  factor between 0.001 and 1010 give exactly 

the same results, so the EKF is very stable, which was expected with the one-compartment 

model (Figure 5-13). 
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Figure 5-13: Observed and predicted outlet chlorine concentration with different values of 

ε factor for the one-compartment model (k = 0.55 d-1) 
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The simulation with the one-compartment model gives good results, but not as good as the two 

other models above.  

 

For the following work, the ε factor (measurement sensitivity) will be taken equal to 1, because 

the six-compartment model gives good results for this value, though it does become unstable 

with a higher value. Since the 6-compartment model is the most accurate, the work below 

continues with it, to illustrate the tuning of the EKF. 

 

5.6.1.2 Initialisation of the covariance matrix M 

By experience, a small value is set for the initialisation of the filter covariance matrix M (0.01), 

thus this forces the filter to follow the observed variables. Figure 5-14 illustrates the results for 

the six-compartment model with two values for the initialisation of the matrix M: 0.01 and 1. 
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Figure 5-14: Predicted outlet chlorine concentration with different initialisation values for 

the covariance matrix M (six-compartment model) 

It is seen that the predicted outlet chlorine concentration curve for the initialisation of the 

covariance matrix M equal to 0.01 converges faster to the observed outlet chlorine concentration 

curve than for the covariance matrix M initialised to 1. Thus, the EKF is tuned, with a ε factor 

(measurement sensitivity) equal to 1 and the initialisation value of the matrix M equal to 0.01. 
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5.6.2 Comparison amongst three models 
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Figure 5-15: Comparison of the predicted outlet chlorine concentration between the three 

models 

 

The three models have the ability to predict quite closely the outlet chlorine concentration 

(Figure 5-15). The six-compartment model (C = 6) is the best one, considering that it predicts 

the detailed variation of the observed outlet chlorine concentration (circled in Figure 5-15). On 

the other hand, because it is the simplest one, the one-compartment model is more robust than 

the others. The one-compartment algorithm will be used on-line. This model has been chosen 

for its simplicity and its ability to adequately predict the outlet chlorine concentration. 
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CHAPTER 6  

ADAPTIVE CONTROL 
 

In this Chapter, the Dynamic Matrix Control theory is applied to the compartment models in 

order to control the outlet chlorine concentration of the reservoir. The tuning of the controller 

and the results of the closed-loop are presented for the three compartment models.  

6.1 DYNAMIC MATRIX CONTROL THEORY 

6.1.1 Definition 

Model Predictive Control refers to a class of control algorithms in which a dynamic model with 

its associated uncertainties is used to predict and optimise process performance. Control design 

methods based on the MPC concept have found wide acceptance in industrial applications 

because of their ability to handle process interactions and unusual dynamic responses, and 

because they do not necessarily demand a rigorous model derived from first principles. 

 

The DMC model algorithm is currently one of the most popular and widely used MPC 

algorithms, because it is simple, intuitive and allows the formulation of prediction vector in a 

natural way. It is based on a linearised step response model, the convolution model, for 

prediction of the effect of possible control actions. 

6.1.2 Theory 

Y 0
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C 0

Outflow

Y R C R

 
Figure 6-1: Chlorine contact tank with the outlet microbe concentration and the 
outlet chlorine concentration determined by the inlet microbe concentration and 

the inlet chlorine concentration 
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Figure 6-1 illustrates an example of a 2-input, 2-output system: the chlorine contact tank in 

which inlet microbe concentration (Y0) and inlet chlorine concentration (C0) cause variations in 

the outlet microbe concentration (YR) and outlet chlorine concentration (CR). Considering that 

the system is steady, if a step is made in C0, two separate responses for CR and YR  are expected. 

Likewise, distinct responses for CR and YR  for a step in Y0 would be expected.  Figure 6-2 shows 

graphically the responses of CR and YR (from their original steady values) for unit positive steps 

in C0 and Y0.  
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Figure 6-2: Step responses for a 2-input 2-output system 

 
Mulholland (2001) explained that for the input vector m (C0, Y0), if it is now considered not just 

one step but a series of control vector moves ∆m1, ∆m2, ..., ∆mM, over a sequence of M time 

steps and if the system is linear, the resultant sequence in x (CR, YR) over P intervals by shifting, 

scaling and superposing the above step responses can be built: 
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 (6.1)                         

 

(Steady-state response 

achieved M time intervals 

ahead with M < P ) 
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This represents the convolution model for future outputs as x = B∆m, where the “matrix of 

matrices” B is generally known as the “Dynamic Matrix”.  Then Mulholland (2001) defines the 

P ×  M matrices from step response coefficients. B0 is the offset matrix of the coefficients and 

BOL is the matrix of the open loop response coefficients. 
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and the present measurements (P) and past inputs (M): 
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then the “open-loop” response, corrected for present model offset, is 

 [ ]0OL OMEAS OL PASTx x B B m= + − ∆  (6.2) 

and by including the contribution of the future control input steps ∆m, the “closed loop” 

response up to the P-step horizon is obtained : 

 CL OLx x B m= + ∆  (6.3) 
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The future open-loop response xOL based on past inputs and the present output is computed on 

each step.  Thus the control problem to reach the desired trajectory xCL amounts to finding 

suitable ∆m as in Figure 6-3. 

 

A constrained multivariable Linear Dynamic Matrix Controller (LDMC), based on the linear 

programming solution of Chang and Seborg (1983), and the formulation of Morshedi et al. 

(1985), has been developed as follows. 

+

+

+

_

_

+

xSP x

x0
present
prediction

eMODEL
    OFFSET

xOL
    1,2,3,....,P

xOL
    CORRECTED
    1,2,3,....,P

eOL
    1,2,3,....,P

∆m

(open-loop trajectory)

find ∆m  to min-
imise   eCL
                       1,2,3,....,P

     REAL
 PROCESS

 PROCESS
    MODEL

measured

 
Figure 6-3: Model Predictive Control configuration (Mulholland, 2001) 

 

If xSP is defined to contain a sequence of set-points for the outputs up to the time horizon P steps 

ahead, so that the open loop error may be calculated in advance as xOL – xSP, the closed-loop 

error for a control move sequence ∆m will be, using equation (6-1): 

    -     CL CL SP OLe x x e B m= = + ∆  (6.4) 

 

Only a limited sequence of N moves (∆m*) is generally optimised (N << P).  Equivalently it 

can be set ∆mk = 0  for  k  >  N,  or alternately replacing B  with the non-square  P×  N  matrix: 
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Then 

      *CL OLe e A m= + ∆  (6.5) 

A quadratic objective function is defined, dependent only on the strategy ∆m*.  

 

( *)   (  ) (  )  ( *) ( *)

               (  *) ( -   *) ( *) ( *)

T T
CL CL

T T
OL OL SP

J m e W e m L m

e A m W x x A m m L m

∆ = + ∆ ∆

= + ∆ + ∆ + ∆ ∆  (6.6) 

If J is minimised with respect to ∆m*, it is found an optimal sequence of control moves, ∆m*, 

which attain minimum deviation from the set-point trajectory up to the time horizon P, for 

minimum control move effort. The weights in the matrices W and Λ, generally diagonal, 

establish the extents to which deviations of either parameter are penalised. Higher values in W 

than Λ will generally be associated with higher “gains”. The values in Λ cause “move 

suppression”. It is easily shown that differentiation of J with respect to the elements of ∆m*, 

and setting the result to the zero vector, yields the unbounded quadratic optimum control move 

strategy 

 

 -1- [     ]     T T
UQO OLm A WA L A W e∆ = +  (6.7) 

 

By adding the successive moves, the sequence of actual control settings is obtained: 

      *      INITm L m m= ∆ +  (6.8) 

0 0 0 0 0
0 0 0 0

0 0 0
0 0

I
I I
I I I

L
I I I I

I I I I I I

 
 
 
 

=  
 
 
 
  
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As noted by Mulholland (2001), a method which will search for the minimum of J within 

defined constraints for both the inputs m and the outputs x requires Quadratic Programming, 

and is quite computation-intensive. In a less demanding approximation, Linear Dynamic Matrix 

Control (LDMC), a combination of control moves getting as close as possible to ∆mUQO, and 

staying within the constraints is sought by Morshedi et al (1985). This re-definition of the 

problem allows using Linear Programming to handle the constraints. Although it does not 

ensure the quadratic optimum, it is expected to be close (and identical within the constraints). 

 

Finally, the optimal ∆m solution is found, whether constrained or otherwise, including optimal 

values for the limited sequence of steps ∆m1 , ∆m2 , ... ,∆mN . However the first step ∆m is the 

only one actually implemented, before the entire optimisation process is repeated on the next 

time-step. The optimisation effect of more than one step can provoke overshooting, with 

subsequent steps correcting the steady-state response.   

6.2 APPLICATION TO OUTLET CHLORINE CONCENTRATION CONTROL 

In this work, the control model for the chlorine contact reservoir is single-input, single-output, 

where only the inlet chlorine concentration is varied to reach the desired outlet chlorine 

concentration. Actually, only the unbounded optimal input solution (equation 6.7) was 

computed. Sometimes, where the optimum control move ∆m lay outside of the allowed range, it 

was simply “clipped” back to the maximum or minimum value. 

 

An adaptive DMC technique is proposed, in which the dynamic matrix A, as well as BOL and B0, 

are updated on each time-step, thus taking into account the system non-linearity. The model 

simulates the chlorine decay process in real time with the same flows and level used on the 

plant, using the collected data. 

 

Following Lacave (2001), the model is used to produce updated step responses in real time.  P 

separate solutions are maintained in parallel with the main real-time representation of the 

process, all based on an offset input signal, continuously updating the local step response. These 

solutions have the same time-varying inputs as the actual process model, except that the 

manipulated variable (C0) is given a fixed offset (in this case, +0.1 mg/L). At each control step, 

one of the solutions (in sequence) is reset to the present modelled output. Between this time and 

the next “resetting” of this particular solution, its output curve diverge gradually from the model 

output curve, on account of the +0.1 mg/L offset in input. The various stages of deviation of 

each solution are used to rebuild a local step-response. The resultant step-response is then set 

into the DMC, which is used for a linear convolution model prediction of the future output. The 
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linearity of the model eases a direct calculation of the required control actions to track the 

desired set-point curve optimally. The continuous adjustment of the dynamic matrix guarantees 

adaptation with regard to non-linearity in the original complex process model (Figure 6-4). 

 

 

 

C R

CR (actual → by model)

Time

3 4 5 6

XS

3 4 5 6

C0

C0 (actual)

C0 +0.1

P separate 
solution 
based on 
the fixed 
offset from 
the actual 
input

 
Figure 6-4: Continuously updated step response from parallel solutions of real-time model 

 

6.3 PROGRAMMING 

The controller module is written at the end of the extended Kalman filter program (see 

Appendix C). The table (Appendix B) translates the symbols used in the theory presented in 

section 6.1.2 to their equivalents in the program. Figure 6-5 is a simplified flow diagram of the 

program. 
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algorithm

Time loop
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DMC algorithm
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3.

7.

Data preparation2.

Manually
set new output

Compute new 
output

Cascade past moves stack
including the last move8.

 
Figure 6-5: Simplified flow diagram of the program including the EKF and DMC 

algorithms 

6.3.1 Initialisation (Step 1) 

The DMC algorithm needs values for the number of optimisation steps to the horizon P (cf. 

Page 6-2 to 6-4)). The small fixed offset added to the inlet chlorine concentration (cf. Pages 6-6 

and 6-7) is set to + 0.1 mg/L and the number of the control moves is set to 1.  
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6.3.2 Steps 2 and 3 

The data preparation and EKF algorithm are explained in the previous chapter (Pages 5-12 and 

5-13). 

6.3.3 DMC step responses (Step 4) 

P separate solutions of the model are solved simultaneously. These all have an input offset by 

+ 0.1 mg/L from the actual input. Each solution output is reset in turn to a solution without the 

offset. Thus the sequence of solution represents successive deviations to an input step of 

+ 0.1 mg/L. 

In these tests, the DMC is based on the same model as that used to simulate the process (four, 

six and one-compartment models. The three controllers were compared, though, of course, they 

were controlling three different models 

λ and the W matrices were adjusted to obtain best controller performance (Equation 6.6). 

6.3.4 Control (Step 5 to 8) 

The DMC needs ∆mPAST vector to be updated at each step. This vector contains history of what 

previous control moves, allowing the DMC to calculate the open loop trajectory. If the DMC is 

disabled, ∆mPAST vector is updated in the same way, according to any manual settings of the 

inlet chlorine concentration, to enable a correct open-loop prediction once the DMC controller 

is enabled. The DMC is developed in the MATLAB language (cf. Appendix B and C). 

6.4 RESULTS AND DISCUSSION 

The off-line control tests were done by controlling the extended Kalman filter model. In the first 

part of the program, the extended Kalman filter algorithm predicts the outlet chlorine 

concentration using the input vector (inlet chlorine concentration). Then, in the second part, the 

DMC algorithm forces the predicted outlet chlorine concentration to reach the set-point by 

calculating a new inlet chlorine concentration, which is considered in the following step as a 

new input for the extended Kalman filter algorithm. The control will be considered for each of 

the compartment models: each controller will control its own specific model. 

6.4.1 Tuning of the DMC 

Different values are studied for W (the penalty weight on squared deviation from the set-point of 

the outlet chlorine concentration), with the λ factor (which is the penalty weight on the control 

move of the inlet chlorine concentration) nominally fixed to the 1, since in the case of just 1-

input, 1-output, it is only the ratio W/λ that matters. The number of optimisation steps to the 
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“steady-state” horizon is P=20 with an interval of 0.0035d giving an horizon of 1.7h, though 

full responses take up to 4h with the reservoir volumes and flows that apply here. For the first 

day, the DMC is disabled, and the observed large fluctuations in the inlet chlorine concentration 

are those occurring on the plant, arising largely from filter-bed charging and discharging. Then, 

the DMC is enabled with the set-point for the outlet chlorine concentration set to 1, and 

thereafter the inlet chlorine setting is that provided by the controller. 

6.4.1.1 Test with W matrix weights equal to 1  

The six-compartment controller does not give as good results, because of its increased 

complexity. Indeed, we try to control models with different complexity, so the six-compartment 

model will be the hardest one to control. However this does not mean that the six-compartment 

control algorithm will be the worst on the plant, because this model might be the best 

representation of the plant. The two other compartment models give similar results (Figure 6-6). 
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Figure 6-6: Comparison between the three models (W=1) 

6.4.1.2 Test with W matrix weights equal to 100  

By increasing the value of the W matrix weights, stronger moves are expected but the stability 

may reduce. In Figure 6-7 (W=100) it can be noticed that, at the beginning of the control, the 

six-compartment model gives smoother results and the outlet chlorine concentration curve 

fluctuates less than with W matrix equal to 1 (circled).  
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Figure 6-7: Comparison between the three models (W=100) 

6.4.1.3 Test with W matrix weights equal to 10 000  

The results given with W=10 000 are similar to those given with W= 100.  If the penalty weight 

is increased above 10 000, the closed loop for the six-compartment model becomes oscillatory 

and less stable, eventually becoming a limit cycle with bang-bang control action (Figure 6-8). 
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Figure 6-8: Comparison between the three models (W= 10 000) 
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6.4.2 Optimisation horizon  (P) 

The Figures 6-9, 6-10 and 6-11 illustrate for the three models (one, four, six respectively) 

control with a short (P = 10) and a long (P = 20) optimisation steps to the horizon. The time 

interval is equal to 0.0035 d. This means that the optimal horizons are respectively equal to 

0.035 days (0.84h) and 0.07 days (1.76h) (10 x 0.0035 and 20 x 0.0035). 
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Figure 6-9: Control of one-compartment model with  0.035 d and  0.07 d optimisation 

horizons 
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Figure 6-10: Control of four-compartment model with 0.035 d and 0.07 d optimisation 

horizons 
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Figure 6-11: Control of six-compartment model with 0.035 d and 0.07 d optimisation 

horizons 

For the six-compartment model particularly, it is seen that the control with 10 optimisation steps 

to the horizon is worse than the control with 20 optimisation steps to the horizon. With more 

than 20, there is no improvement in the control to warrant the increased computation. 

 

The one-compartment model gives an adequate open-loop simulation in the previous chapter 

(Figure 5-13), and as the control gives good results, this model has been chosen to be 

implemented on-line. It has thus not been considered worthwhile attempting to implement the 

more accurate 6-compartment model, with its inherent computational demands and risks. 

Moreover, the on-line implementation within the SCADA system needs something simple and 

robust. 
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CHAPTER 7  

ON-LINE IMPLEMENTATION 
 

 

Isermann (1982) explained that adaptive control systems adapt their behaviour to the changing 

properties of controlled processes and their signals. In the feedback adaptation (closed loop 

adaptation, Figure 7-1) information on the process behaviour is gained by measuring process 

input and output signals, from which parameters determining the behaviour can be identified. 

Then, based on this information, the controller can be calculated and adapted. A second 

feedback path results leading to a closed loop action with the signal flow path: control loop 

signals-adaptation algorithm-controller-control-loop signals.  
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C o n tro lle r P ro cesserro r

P ro cess p a ram ete r
id en tifie r
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-

F eed b ack

In p u t+

 
Figure 7-1: Adaptive control structure 

7.1 SIMPLIFIED ONE-COMPARTMENT MODEL 

The one-compartment model has been chosen to be implemented on-line. However, some 

modifications have been made. It was shown in section 5.5 that the kinetic factor k was not 

constant but depended on the volume inside the reservoir and on the period of the year. The 

extended Kalman filter is simplified and used to find the kinetic factor k as described in the 

following equations (Equation 7.1 to 7.4), using the inlet and outlet chlorine concentration, the 

level and the inlet flow rate of the reservoir. 
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Equation 5.36 can be re-written in this form: 

0
0

( ) 1 1 A h( ) ( )    with =
F

dC t C t k C t
dt

τ
τ τ

× = − + 
 

                                  (7.1) 

where  C0  = inlet chlorine concentration (mg/L) 

 C  = outlet chlorine concentration (mg/L) 

 t   = time (d) 

 k   = kinetic factor (d-1) 

 A  = area of the reservoir (m2) 

 h   = water level (m) 

 F0  = inlet flow rate of the reservoir (m3.d-1) 

 τ    = theoretical residence time (d)  

 

If the first order decay is not included, Equation 7.1 can be integrated: 

( ) ( ) ( )* * 1
0

1 1[1 ] ( )     with     and -A t A tC t t e C t e A BC t A B
τ τ

∆ ∆ −+ ∆ = + − = =        (7.2) 

 

Now, including the first order decay with a simple Euler integration, Equation 7.3 is obtained 

from Equation 7.2: 

( ) ( ) ( ) ( )* * * *( )      with        and   1A t A t
o tC t t A C t B C t k t C t t A e B e∆ ∆+ ∆ = + − ∆ = = −       (7.3) 

 

Thus, the main equation of the Kalman filter (Equation 5.50) is obtained: 

( )* * 0( ) ( ) ( ) ( ) ( ) ( )k t t k t K A C t B C t k t C t t x t t + ∆ = + + − ∆ − + ∆                                  (7.4) 

 

Then, in the DMC algorithm, the matrices B, BOL, and B0 (Equation 6.1 and 6.2) are dependent 

on the kinetic factor k, which is updated each time the extended Kalman filter runs, allowing for 

better control of the outlet chlorine concentration. The optimisation steps to the horizon for the 

DMC is set to 40 points spaced at 3 minute intervals (2h horizon). For the 2-4 hour response 

times observed under the typical reservoir volumes and flows that apply here, this was a 

compromise bearing in mind the computational load. 

 

The prediction error matrix Q of the Kalman filter algorithm is directly linked to the observation 

error matrix R (Equation 5.46, 5.47 and 5.52): 

Q = ε* R               (7.5) 

where ε is the measurement sensitivity, which will be termed as well as the gain of the extended 

Kalman filter. 
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The same is done for the penalty weight on the squared deviation from the set-point to the outlet 

chlorine concentration matrix W and the penalty weight on the control move of the inlet chlorine 

concentration matrix λ: 

W = β * λ                (7.6) 

where β  is thus the gain of the DMC. 

 

The MATLAB test program (Section 6.3) is translated into VISUAL BASIC, which is the 

mathematical language read by the Script Agent of ADROIT (Appendix E). A table in 

Appendix D gives the symbols used in the theory for their equivalent in the Visual Basic 

program (Appendix E). 

 

The ADROIT Script Agent can be used in the off-line mode or in the on-line mode. In the off-

line mode, the plant is simulated by equations using the measured plant inputs to predict the 

outlet chlorine concentration (if the DMC controller is enabled, it replaces input plant chlorine 

concentration with the DMC output). In the on-line mode, the observed outlet chlorine 

concentration Cm(t) is filtered (to remove rapid measurement noise) using the following relation: 

CF(t+∆t) = γCm(t)+(1-γ)CF(t)               (7.7) 

 

where  CF  = filtered outlet chlorine concentration (mg/L) 

 Cm  = observed outlet chlorine concentration (mg/L) 

 t     = time (d) 

 γ     = smoothing factor  

This smoothed chlorine concentration is then used as feedback to the DMC, and, of course, the 

DMC output is output to the plant if the DMC is enabled. Figure 7-2 is a simplified flow 

diagram of the ADROIT program. The table in Appendix D translates the symbols used in the 

theory (Section 6.3 and 7.1) 
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Figure 7-2: Simplified flow diagram of the ADROIT program 
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7.2 RESULTS 

7.2.1 Adroit presentation 

All the data in Adroit are called tags and stored in different categories (analogue, digital, script, 

text, etc...) in the Configuration Agent. In the Script Agent, it is possible to import the tags 

directly to the program, to modify them, and then to set them back into the Configuration Agent. 

Thus, the inlet and outlet chlorine concentration, the inlet flow rate and the level of the reservoir 

data are directly imported in the program, as well as the time elapsed since midnight in seconds. 

The time tP between two runs of the program is set in to the Script Agent. The program is 

protected from wrap-around at midnight. 

 

As it is impossible to store variables in the program itself, and some of them need to be 

permanently updated accounting for the previous moves (as ∆mPAST for example, Equation 6.2), 

these variables are defined as tags. It is possible to obtain and to relay them to the Configuration 

Agent between two runs of the program, thus allowing them to be stored. Figure 7-3 shows the 

User Interface of Adroit.  

 
Figure 7-3: User Interface screen of ADROIT 
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For the off-line study, the inlet chlorine concentration value is set to 1.6 mg/L, the outlet 

chlorine concentration value is set to 1.2 mg/L, the level is set to 4 m and the inlet flow rate to 

130 ML/d. The kinetic factor k is arbitrarily initialised to 0.65 d-1. This over-specification will 

lead to a new kinetic factor. The smoothing factor γ, to remove the feedback outlet chlorine 

measurement noise, is set to 0.1. 

7.2.2 Off-line mode 

In preparation for the on-line controller commissioning and to experiment with tuning 

parameters, an off-line test was done (online factor is set to 0)  

7.2.2.1 Time loop 

In the on-line mode, the Adroit program is called every 5 seconds, to give a reasonably fast 

response on the screen to operator changes of the settings such as set-point or tuning 

parameters. Within this context the EKF counts down from 20×5  to execute on a 100-second 

interval, wilst the DMC counts down asynchronously from 36×5 to execute on a 180-second 

interval. The on-board simulation model (which replaces the actual plant in this section 7.2.2), 

on the other hand, executes on every 5-second call. 

A speed up factor has been created to obtain faster response in the off-line mode. The internal 

time in the DMC and the extended Kalman filter are multiplied by this factor, thus a faster 

response is obtained. This factor has been set equal to 20 in tests. 

7.2.2.2 Extended Kalman filter only 

To begin, the DMC is disabled (auto is set to 0) and so the Kalman filter must calculate the right 

kinetic factor k, for the fixed inlet and outlet chlorine concentration, the level and the inlet flow 

rate. Depending on the value of the Kalman gain ε, the steady state is obtained more or less 

rapidly (Figure 7-4 and 7-5). 
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Figure 7-4: Estimation of the kinetic factor k with different values of the EKF 



CHAPTER 7 ON-LINE IMPLEMENTATION

 

7-7 

 gain (ε= 1, 10, 100) 

1.135

1.205

0 300
Iteration number

O
ut

le
t c

h
lo

ri
n

e 
co

nc
en

tr
at

io
n 

(m
g/

L)
ε  =  1

ε  =  1 0 0

ε  =  1 0

 
Figure 7-5: Predicted outlet chlorine concentration with different values of EKF 

 gain (ε=1, 10, 100) 

The iteration number is the number of times that the extended Kalman filter is run, meaning that 

the program runs 600 times (=2x300). At the beginning, the kinetic factor is initialised with a 

high value, so the calculated outlet chlorine concentration lies below the observed outlet 

chlorine concentration, then the extended Kalman filter finds the right value so that the 

calculated outlet chlorine concentration can be equal to the observed outlet chlorine 

concentration. The best result is obtained with the extended Kalman filter gain ε equal to 100. 

Above this value, the extended Kalman filter becomes unstable. For this simulation, the kinetic 

factor obtained is equal to 0.57 d-1. 

 

The Kalman filter gain ε is fixed to 100 and the inflow rate is doubled (from 130 ML/d to 

260 ML/d), and the value of the kinetic factor k obtained is 1.14 d-1, which was the expected 

result (twice the kinetic factor obtained with an inflow rate equal to 130 ML/d). 

 

7.2.2.3 Extended Kalman filter alone then together with Dynamic Matrix Controller 

After having obtained the steady state with the Kalman filter (300 iterations), the DMC is 

triggered with a set-point fixed to 1 mg/L at the 350th iteration. Different values for the DMC 

gain factor β are studied, the results are shown after the 300th iteration (run number of the 

extended Kalman filter) (Figure 7-6). 
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Figure 7-6: Predicted chlorine concentration with different values of the DMC gain  

(β = 1, 10, 100)  

The best result is obtained with a DMC gain factor β equal to 10. Indeed, the results with the 

DMC gain β equal to 1 are smoother than the results obtained with β equal to 10 but the set-

point is obtained with a greater number of iterations. It can be seen that for a large DMC gain 

factor, it becomes unstable.  

7.2.2.4 Extended Kalman filter together with Dynamic Matrix Controller 

For this study, the DMC with an outlet chlorine concentration set-point equal to 1 mg/L is 

triggered from the beginning. The DMC gain β is set equal to 1 for the first test and then equal 
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to 10 (Figure 7-7). The extended Kalman filter gain ε is set to 100 (Figure 7-8 illustrates the 

estimated kinetic factor, as ε is fixed, only one curve is obtained). 
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Figure 7-7: Predicted outlet chlorine concentration with different values of the DMC gain 

(β=1 and 10) 
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Figure 7-8: Estimation of the kinetic factor k (ε= 100) 

 

With a DMC β gain equal to 10, the trajectory approaches the steady state rapidly. Though the 

kinetic factor requires some time to converge to the fixed k value, this variation does not 

degrade the DMC performance significantly. 
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Figure 7-9: Comparison of the predicted inlet chlorine concentration with two different 

values of the EKF gain ε (10 for the dark curve and 100 for the light curve) 

Inlet ε = 100 
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7.2.3 On-line mode 

7.2.3.1 Tuning of the extended Kalman filter 

Firstly, the extended Kalman filter gain ε  was set to 100 and the Dynamic Matrix Controller 

gain β was set to 10, as determined in the off-line mode. However, the system was responding 

too fast (Fig. 7-9). To obtain a smoother signal, the extended filter gain ε has been decreased to 

10.  The Dynamic Matrix Controller gain β was kept set to 10. 

7.2.3.2 Hypochlorite pump for inlet chlorine 

The operators controlled the chlorine concentration in the inlet flow based on their experience. 

They did this by varying the pump flow rate of NaOCl (sodium hypochlorite or “hypo”), which 

is converted to a percentage of pump scale (Table 7-1 shows typical observed behaviour). 

Depending on the water inflow rate, and on the inlet chlorine concentration wanted, they set 

different values for the hypo pump flow rate. 

 

Table 7-1: Pump flow rate estimation for different  inlet chlorine concentrations and 

different water inflow rates 

Inflow rate (ML/d) 
Inlet chlorine 
concentration 

(mg/L) 
Pump (%) 

110 1.4 5 

110 1.6 6.5 

140 1.4 7 

 

In order to apply the required inlet chlorine concentration calculated by the DMC algorithm, an 

open-loop predictor was added that sets the hypo pump flow rate to achieve the specified inlet 

chlorine concentration, which in this case is the manipulated variable of the DMC. It was found 

impossible to use the feedback measurement of the actual chlorine inlet concentration, owing to 

large swings in this value as water is drawn to, or discharged from, the filter beds (See Fig. 7-9). 

 

Based on Table 7-1, the following relations have been used: 

(6.15 Pump Setting) 95.5Predicted Inlet Chlorine Concentration
(Water Flow 2)
× +

=
+

      (7.8) 
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(Required Inlet Chlorine Concentration) (Water Flow 2) 95.5Required Pump Setting
6.15

× + −
=

                    (7.9) 

The offset of the Water Flow by +2 is merely a protection against division-by-zero. 

 

7.2.3.3 Results 

The first part of the following graph has no automatic control, as is evidenced by the occasional 

stepping of the hypo pump setting by the operator. Then the DMC controller (incorporating the 

adaptive adjustment of the identified chlorine loss rate constant from the Kalman filter) is 

switched on at the 80th hour (shown by the “auto line “, which goes from zero to one). The 

chlorine set point is fixed to 0.95 mg/L. 
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Figure 7-10:  Comparison of outlet chlorine control performance by  manual operation 

(up to 80 hours) and by adaptive Dynamic Matrix Controller (after 80 hours) 

 

The automatic control is acceptable, perhaps a little better than the occasional adjustments of the 

operators. In fact there is some confidence in the new controller amongst the operators. 

However, when time permits it is intended to improve the tuning of this controller using a 

longer optimisation horizon (4 hours instead of the present 2 hours), and to increase the move 

suppression (lower β). This will reduce the gain of the controller, which appears to be 

overshooting. Bearing in mind that this version of the DMC controller does not treat constraints 

optimally (it simply “clips” hypo pump settings at maximum and minimum values), one 

pump%
pump%

Cl2 setpoint Cl2 at outlet

auto switch
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problem is that the hypo pump cannot be set lower than 0% (whereas hypo is still being added 

at 0%). On the plot, the main deviations from the set-point are all caused by excessive control 

action - each peak comes from an excessive hypo pump adjustment - making the controlled 

variable it a bit oscillatory. Other issues such as appropriate tuning of the Kalman filter, for a 

desirable rate of variation of the predicted chlorine decay rate constant, should also be examined 

further.  
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CHAPTER 8  

CONCLUSIONS 
 

This study has focused on the prediction and real-time control of the outlet chlorine 

concentration for the chlorine contact reservoir at Umgeni Water Wiggins Waterworks, Durban.  

 

In order to control the outlet chlorine concentration, it was necessary to gain an understanding 

of the physical performance of the reservoir. A Computational Fluid Dynamics study revealed 

complex behaviour of the reservoir. In particular, it indicated preferential pathways for the flow 

through the two sections of the reservoir. These create stagnant volumes in which the chlorine 

concentration is especially depleted. The baffles inside the two sections of the reservoir are 

probably not well located, and a change of the geometry of the two sections may improve the 

situation. While Computational Fluid Dynamics can aid understanding of the physical processes 

of the reservoir, the model is too detailed and computationally intensive to be applicable for real 

time control. A simplified model is therefore required. The interpretation of a simulated tracer 

test done using Computational Fluid Dynamics led to the successful creation of compartment 

models, namely the six-compartment model and the four-compartment model. In order to 

implement the model on-line, however, the reservoir has also been considered as a single 

compartment (one-compartment model). This allowed a robust and simple implementation for 

only a small reduction in prediction accuracy. 

 

As the mathematical models are non-linear with a mix of differential and algebraic equations, 

they are solved for simulation purposes within an extended Kalman filter. The algorithm is used 

in two different ways. Initially, the compartment models are able to infer the chlorine decay 

constant, given the real-time measured observations around the reservoir, including inlet and 

outlet chlorine concentrations. The effects of the large disturbances in the inlet chlorine 

measurement, due to filter-washing, are reduced by using a long response time for this Kalman 

filter. Next, as discussed below, the adapted model, with the continuously updated chlorine 

decay rate constant, forms the basis of the predictive controller. It was found that the 

approximation of the chlorine decay kinetics as a first order decay model does not greatly 

influence the quality of the results, when compared to plant data. 

 

Dynamic Matrix Control (DMC), one of the most popular techniques of Model Predictive 

Control (MPC), was chosen for controlling the outlet chlorine concentration by manipulating 
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the inlet chlorine concentration, by means of the sodium hypochlorite dosing pump. DMC is 

based on a linear convolution model using step-responses, and therefore does not require 

rigorous derivation from first principles. 

 

The one-compartment model has been simplified for its implementation on-line. In preparation 

for the commissioning of the on-line control algorithm, and to experiment with the tuning of 

parameters, preliminary closed loop off-line tests were designed to determine robustness and 

controller performance. In order to apply the algorithm on-line using the inlet chlorine 

concentration requested by the DMC, a feedforward controller has been created to manipulate 

the NaOCl pump flow rate to achieve the inlet chlorine setting. 

 

Acceptable performance of the DMC controller for the outlet chlorine concentration has been 

achieved, to the extent that there is some confidence in it by experienced operators. It is 

recommended that the optimisation horizon be increased from 2 to 4 hours, and that the 

controller gain β be reduced in controlled tests. This should reduce the oscillations observed in 

the controlled variable, the chlorine composition at the reservoir outlet. 

 

This on-line implementation of advanced control in a water treatment process has shown that 

there is potential for further development in this area, especially in a case like this where long 

time constants, temporal changes in behaviour, and a multivariate dependency, conspire to make 

intuitive operator interventions less effective. 
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APPENDIX A 

EXTENDED KALMAN FILTER FORMULATION 
 

Presented in this appendix, is the extended Kalman filter formulation (Mulholland, 2001) for 

solution of differential and algebraic equation systems. The first step provides a linearisation of 

the system using a Taylor series expansion, and then the Kalman filter is used for state 

estimation. 

  

Consider the system of first order differential and algebraic equations: 

( )

( )

,

,

d
d t

=

=

y f y z

0 g y z
             (A.1) 

where y is a vector of state variables and z a vector of algebraic variables. 

 

Defining the Jacobians: 
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linearise the right hand sides about (y0, z0) to obtain the augmented system: 
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where 
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           (A.4) 

 

To allow for the possibility that some of the z elements might be free, overspecify the behaviour 

by suggesting that z will move towards some observed value z0. 

 

( )0 τ= −1z z z              (A.5) 

 

so that Equation A.3 becomes 
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an additional requirement is also defined from Equation A.3 as 
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To handle that the possibility that the states y may also be observed, augment the above 

equation as follows: 
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0Letting , and  , integrate from 0 to  keeping  fixed:   

                                                                            (A.9)
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Representing the equivalent set of measurements by ŵt, the Kalman filter is configured as 

follows:  
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M = A I - K C M A + Q

                                                            (A.12) 

 

where the covariance matrix is initialised with M0 small and Q and R the expected error 

covariance matrices for the model and the measurements respectively. 
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APPENDIX B 
 

TABLE B-1: INTERPRETATION OF VARIABLES IN 

MATLAB PROGRAM 

 

Time  t 

Inlet flow rate data F0_data 

Outlet flow rate data FR_data 

Level data H_data 

Inlet chlorine concentration data x0_data 

Outlet chlorine concentration data xR_data 

Chlorine concentration at the mixing point xM 

Water surface area AF 

Observed variable subscript o 

Inlet subscript 0 

Outlet subscript R 

Kinetic factor k1 

Flow from i to j Fij 

Number of compartments C 

Outlet chlorine concentration set-point xr_sp 

Initialisation factor Init 

  or  ∂ ∂
∂ ∂y z

 (Jacobians) Jy or Jz 

Initialisation of the covariance matrix M Mt_start 

Covariance matrix M Mt 

Measurement sensitivity factor ε QR100 

Calculation of the Jacobians Reevaluate 

Percent of range of the Jacobians pcmove 

Maximum percent of range of the Jacobians 

allowing  
pcmove_tolerance 
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Small offset stepIN 

Automatic (DMC is trigerred) auto 

Control moves number nopt 

Optimisation steps to the horizon (P) nDMC 
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BOL Bol 

B0 B0 

W WW 
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APPENDIX C 

    MATLAB PROGRAM 
 
%***************************************************************** 
%                       * 
%   SIX-COMPARTMENT MODEL (Extended Kalman Filter Solver)   * 
%      with DYNAMIC MATRIX CONTROL          * 
%                       * 
%                       * 
%***************************************************************** 
 
 
close all; 

clear all; 

%***************************************************************** 

%                       * 

%       INITIALISATION            * 

%                         * 

%***************************************************************** 

 

% FOR CONTROL 

 

% Optional parameter list to control solution 

pcmove_tol=10;     % max percentage move for any one variable  

       % before reevaluation of Jacobians 

minrange=0.001;    % min allowed ranging for Q & R setting 

tol = 1e-15;       % Tolerance for matrix exponential convergence  

SM = 1e-8;         % Small value to protect against div-by-zero  

SMM = 1e-12;       % Small value to weed matrix Mt and matrix K  

Mt_START=0.01;     % Initialisation of Mt matrix   

nFirstKrecalc = 1; % Number of initial recalculations of K  

                   % to get some convergence 

Kint = 10;         % No. of steps between re-evaluation of  K 

Kcomp = 10;        % No. of compulsory initial re-evaluations of K 

QR100 =1;          % Q & R scaling term  

FirstK=1;          % Flag 

fast_response_factor=2.0;  

STARTATLAST = 0; 

CONSTRAINTSFROMLAST = 0; 

LOADLASTMT = 0; 
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% Common Error Factors for Tuning 

% multiplies by relative "yo" errors above to get observation errors 

% for observed variables only 

yo_err_factor =  .5;     

 

% multiplies by relative "y" errors above to set unknown 'z' model    % 

errors 

yu_err_factor =   5;  

 

% multiplies by relative "f" errors below to get equation errors 

f_err_factor  =  .1; 

 

% multiplies elements of R matrix before squaring   
Rfactor       =   1;     
 
% -------------------------------------------------------------------- 
% FOR DMC 
dtDMC=0.03;   % [days]      
nDMC=20; 
stepIN=0.1;   % shift in input to reveal response 
ipointer=1;   % initial pointer position 
icount=0;  
resp=zeros(nDMC,1); 
tlast_step=0; 
auto=0;       % initially on manual 
nopt=1; 
xR_sp         =   0.8;  % initialization set point 
 
% ----------------------------------------------------------------------- 
% GET PLANT DATA FROM FILE  
data_020402;   % That open the file with the data 
nstep=size(DATA,1);   
 
 
% -------------------------------------------------------------------- 
% TIME INTERVAL 
t  = 0; 
t_final=DATA(nstep,1);          % [days]    
dtav=t_final/nstep;        % [days] 
Tau = fast_response_factor*dtav; 
 
 
% -------------------------------------------------------------------- 
% MAXIMUM POSSIBLE SIZE 
nfmax =600;   % number of equations  
nymax =800;   % total number of variables 
f = zeros(nfmax,1);    
ff = zeros(nfmax,5);    
y=zeros(nymax,1); 
y_lastJ=zeros(nymax,1); 
yy=zeros(nymax,6); 
yo = zeros(nymax,1); 
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ylimflag = zeros(nymax,4); % flags (a: ny count b:1/2=lower/upper  
         % c:limit value d: reference index) 
for i=1:nymax 
   ylimflag(i,1)=i;        % marker 
   ylimflag(i,2)=0;        % no limit 
   ylimflag(i,3)=-99;      % no limit value 
   ylimflag(i,4)=0;        % no reference index 
end 
 
% -------------------------------------------------------------------- 
% PLOTTING INFORMATION 
dtplot = dtav;    
p=floor(t_final/dtplot); 
tp=zeros(p,1); 
tlastplot=0; 
iplot=0; 
 
 
 
%!!!!!!!!!!!!!!!!!!!      Main time loop !!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
 
INIT = 1;  % Initialise on First Pass 
nKint=0; 
nKcomp=0; 
upperclip=0; 
idata=0; 
t=0; 
 
while t<t_final      %t_final 
    
   [t t_final] 
    
   tlast=t;               
   idata=idata+1; 
   t=DATA(idata,1);        
   dt=t-tlast; 
    
   % ----------------------TO BE SET BY USER BELOW-------------------- 
   % Set present observations on each step 
    
   if INIT 
    % number of compartments 
      C=6;  % number of compartments 
      M=1;  % only 1 species 
      % fixed parameter arrays 
      AF=zeros(C,1);      % Compartment surface area   [m2] 
       
      % observation arrays 
      xo=zeros(C,1); ho=zeros(C,1);   
      
      % working arrays 
      x=zeros(C,1); h=zeros(C,1);  
 
      % constraint arrays 
      xc=zeros(C,1); hc=zeros(C,1);  
 
      % plotting arrays  (pREDICTIONS) 
      xP=zeros(p,C); hP=zeros(p,C);  
      k1P=zeros(p,1); alphaP=zeros(p,1); F0P=zeros(p,1); 
      FRP=zeros(p,1); x0P=zeros(p,1); xRP=zeros(p,1);xMP=zeros(p,1); 
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F1MP=zeros(p,1); FM2P=zeros(p,1);               
F2SP=zeros(p,1);F34P=zeros(p,1); 

      hMP=zeros(p,1);hRP=zeros(p,1);F45P=zeros(p,1);F56P=zeros(p,1); 
      F6MP=zeros(p,1); 
 
      % plotting arrays  (OBSERVATIONS) 
      xoP=zeros(p,C); hoP=zeros(p,C);  
      k1oP=zeros(p,1); alphaoP=zeros(p,1);  
      F0oP=zeros(p,1); FRoP=zeros(p,1); x0oP=zeros(p,1); 

xRoP=zeros(p,1);xMoP=zeros(p,1); F1MoP=zeros(p,1); FM2oP=zeros(p,1);  
F2SoP=zeros(p,1);F34oP=zeros(p,1); hMoP=zeros(p,1);hRoP=zeros(p,1); 

      F45oP=zeros(p,1);F56oP=zeros(p,1);F6MoP=zeros(p,1); 
    
    % flow resistance factor for reservoir interconnection i/j 
    %[(Ml/day)/(m)^0.5] 
    beta1M = 100;  
      beta2S = 100;   
      beta34 = 100;   
      beta45 = 100;    
      beta56 = 100;   
      beta6M = 100;  
       
      % Values for upper constraints 
      k1c  =8;             % [/day]      
      F0c  =300;                      % max for F0 
      FRc  =300;      
    x0c  =3.0;               % chlorine in total inflow [ppm] 
    xRc  =2.0;              % chlorine in total outflow [ppm] 
      hMc      =8;  
      hRc      =8;  
      xMc  =2; 
    for i=1:C 
       hc(i)    =8.0;               % Level  [m]  
       xc(i)    =2.0;                 % Chlorine level in outflow [ppm] 
      end 
       
   end 
 
   % FOR MEASURED PLANT DATA ================================= 
 
   F0_data =DATA(idata,2);      % Total flow inlet 
   FR_data  =DATA(idata,3);      % Total flow outlet 
   H_data =DATA(idata,4);   % Level  
   x0_data =DATA(idata,5);      % Total concentration inlet 
   xR_data  =DATA(idata,6);      % Total concentration outlet 
    
   %========================================================== 
    
   % Volume surface area [Ml/m] 
   AF(1) = 0.2*(116.0*76.5)/1e3;   % First compartment       
   AF(2) = 1*(116.0*76.5)/1e3;     % Second compartment 
   AF(3) = 0.2*(116.0*76.5)/1e3;   % part of the plug flow volume 
   AF(4) = 0.2*(116.0*76.5)/1e3;   % part of the plug flow volume 
   AF(5) = 0.2*(116.0*76.5)/1e3;   % part of the plug flow volume 
   AF(6) = 0.2*(116.0*76.5)/1e3;   % part of the plug flow volume 
 
    
 % Initial & Observed Values 
 
 k1o  =0.2;% [/day]      
   alphao =0.6;    
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   F0o  =F0_data;    
   FRo  =FR_data;      
   if ((~auto)|(tlast==0)) 
      x0o   =x0_data;    % chlorine in total inflow [ppm] 
      x0_set=x0_data;      % for first switch to control 
   end 
   if auto 
      x0o   =x0_set;       % if it is under control, use the last set value 
   end 
   xRo  =xR_data;     % chlorine in total outflow [ppm] 
   xMo  =0;       % chlorine in the mising point [ppm] 
   hMo      =H_data;  
   hRo      =H_data;  
   F1Mo  =0; 
   FM2o  =0; 
   F34o  =0; 
   F45o  =0; 
   F56o  =0; 
   F6Mo  =0; 
   F2So  =alphao*FR_data; 
   for i=1:C                      
 xo(i)    =xR_data;    % Chlorine level in flow between reservoir                  
   end 
    
   for i=1:C 
      ho(i)    =H_data;     % Level  [m]  
   end 
    
 %***************************************************************** 
 %                       * 
 %       EXTENDED KALMAN FILTER         * 
 %                         * 
 %***************************************************************** 
    
   % Check percent of ranges moved since last step  
   % to tell if must re-evaluate Jacobians 
    
     
   if INIT 
      REEVALUATE=1; 
   else 
      REEVALUATE=0; 
      for j=1:ny 
         pcmove=100*abs((y(j)-y_lastJ(j))/(yy(j,6)-yy(j,5))); 
         if pcmove>pcmove_tol 
            y_lastJ=y; 
            REEVALUATE=1;   % if any one move greater than tolerance 
            break; 
         end 
      end 
   end 
   
   
   
 pertfr = 0.001; 
 
   n_evals = 1+REEVALUATE*nymax; % breaks out of loop at 1+nys 
 
 % EVALUATE FUNCTIONS & their JACOBIAN  
 for ne=1:n_evals 
    if (ne>1) 
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       % perturb 
       jj=ne-1; 
          
         dyjj = pertfr*(yy(jy(jj),6)-yy(jy(jj),5)); 
         if dyjj==0 halt; end; 
       y(jy(jj))=y(jy(jj))+ dyjj; 
      end 
      INI=2; 
       
       
      % ----------------------TO BE SET BY USER BELOW----------------- 
       
       
      for reload=1:(INIT+1) 
         if STARTATLAST&INIT  
            INI=INI-1; 
            if INI==0 
               y=yL; 
            end 
         else  
            INI=INIT;  
         end; 
       n=0; 
  % Selection of Variables & Observations, Setting of Observation 
      % Errors and Ranges 
  % [Observation Errors are as Standard Deviation (-ve=absolute;  
  % +ve=% of Initial)] 

       % STATES                          r s o er% min  max         init  
    for i=1:C n=n+1; if INI yy(n,:)=[ 1 1 1  1  0.0 hc(i)]; y(n)=ho(i); 
    end; h(i) =y(n); yo(n)=ho(i);  end; % [m]  
     
  for i=1:C n=n+1; if INI yy(n,:)=[ 2 1 0  1  0.0 xc(i)]; y(n)=xo(i);   
  end; x(i) =y(n); yo(n)=xo(i);  end; % [m]  
        
      ns=n;  % No of states 
       
      % OTHER VARIABLES         
    n=n+1;           if INI yy(n,:)=[ 3 1 0  .01  0.0  hMc ]; y(n)=hMo; 
      end; hM    =y(n); yo(n)=hMo;        % [m]  
 
  n=n+1;           if INI yy(n,:)=[ 4 1 1  1  0.0  x0c ]; y(n)=x0o;     
      end; x0    =y(n); yo(n)=x0o;        % [ppm]  
 
  n=n+1;           if INI yy(n,:)=[ 5 1 0  2 0.0  xRc ]; y(n)=xRo;     
      end; xR    =y(n); yo(n)=xRo;        % [ppm]  
 
  n=n+1;           if INI yy(n,:)=[ 6 1 0  2  0.0  xMc ]; y(n)=xMo;     
      end; xM    =y(n); yo(n)=xMo;        % [ppm]  
 
  n=n+1;           if INI yy(n,:)=[ 7 1 1  1  0.0  F0c ]; y(n)=F0o;     
  end; F0    =y(n); yo(n)=F0o;        % [Ml/day]  
 
  n=n+1;           if INI yy(n,:)=[ 8 1 1  1 0.0  FRc ]; y(n)=FRo;  end;  
  FR    =y(n); yo(n)=FRo;        % [Ml/day]  
 
    n=n+1;           if INI yy(n,:)=[ 9 1 0  1 -150  300]; y(n)=F1Mo;    
  end; F1M   =y(n); yo(n)=F1Mo;       % [Ml/day]  
 
  n=n+1;           if INI yy(n,:)=[10 1 0  1  -150 300]; y(n)=FM2o;    
  end; FM2   =y(n); yo(n)=FM2o;       % [Ml/day]  
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  n=n+1;           if INI yy(n,:)=[11 1 0 0.5 -150  300]; y(n)=F2So;    
  end; F2S   =y(n); yo(n)=F2So;       % [Ml/day]  
 
   n=n+1;           if INI yy(n,:)=[12 1 0  1 -150  300]; y(n)=F34o;    
  end; F34   =y(n); yo(n)=F34o;       % [Ml/day]  
 
  n=n+1;           if INI yy(n,:)=[13 1 0  1 -150  300]; y(n)=F45o;    
  end; F45   =y(n); yo(n)=F45o;       % [Ml/day]  
 
  n=n+1;           if INI yy(n,:)=[14 1 0  1 -150  300]; y(n)=F56o;    
  end; F56   =y(n); yo(n)=F56o;       % [Ml/day]  
 
  n=n+1;           if INI yy(n,:)=[15 1 0  1 -150  300]; y(n)=F6Mo;    
  end; F6M   =y(n); yo(n)=F6Mo;       % [Ml/day]  
 
     n=n+1;           if INI yy(n,:)=[16 1 1  1 0.0  1.0 ]; y(n)=alphao;  
  end; alpha =y(n); yo(n)=alphao;     % [-]  
 
     n=n+1;           if INI yy(n,:)=[17 1 1  1 0   k1c ]; y(n)=k1o;  end;  
  k1    =y(n); yo(n)=k1o;        % [/day]  
 
      n=n+1;           if INI yy(n,:)=[18 1 1  1  0.0   k2c ]; y(n)=k2o;   
  end; k2    =y(n); yo(n)=k2o;        % [/(ppm.day)]  
 
  n=n+1;           if INI yy(n,:)=[19 1 0  .01  0.0 hRc ]; y(n)=hRo;   
  end; hR    =y(n); yo(n)=hRo;        % [m]  
 
  end 
 
 
      % STORE COUNT 
      ny=n;  % No of variables 
                   
      n=0;   
  % Selection of Functions, Setting of Functions 
  %                                  sel err ref 
      % STATE EQUATIONS 
      n=n+1; ff(n,:)=[ 1 1 1 1 0]; f(n)=(F0-F1M)/AF(1);     % dh/dt [m/day]  
      n=n+1; ff(n,:)=[ 1 1 1 2 0]; f(n)=(F1M+F6M-F2S)/AF(2);            
  n=n+1; ff(n,:)=[ 1 1 1 3 0]; f(n)=((1-alpha)*F2S-F34)/AF(3); 
     n=n+1; ff(n,:)=[ 1 1 1 4 0]; f(n)=(F34-F45)/AF(4);                
  n=n+1; ff(n,:)=[ 1 1 1 5 0]; f(n)=(F45-F56)/AF(5);       
      n=n+1; ff(n,:)=[ 1 1 1 6 0]; f(n)=(F56-F6M)/AF(6);         
        
      n=n+1; ff(n,:)=[ 1 1 2 1 0]; f(n)=(F0*x0-F1M*x(1)- 

                                         -
(k1+k2*x(1))*x(1)*AF(1)*h(1)-x(1)*(F0-F1M))/(AF(1)*h(1)+SM);% dx/dt 
  

      n=n+1; ff(n,:)=[ 1 1 2 2 0]; f(n)=((F1M+F6M)*xM-F2S*x(2) 
       -(k1+k2*x(2))*x(2)*AF(2)*h(2)-x(2)*(F1M+F6M-F2S))/(AF(2)*h(2)+SM); 
   
     n=n+1; ff(n,:)=[ 1 1 2 3 0]; f(n)=((1-alpha)*F2S*x(2)-F34*x(3)- 

(k1+k2*x(3))*x(3)*AF(3)*h(3)-x(3)*((1-alpha)*F2S- 
F34))/(AF(3)*h(3)+SM);             

 
      n=n+1; ff(n,:)=[ 1 1 2 4 0]; f(n)=(F34*x(3)-F45*x(4)- 
      (k1+k2*x(4))*x(4)*AF(4)*h(4)-x(4)*(F34-F45))/(AF(4)*h(4)+SM);   
 
      n=n+1; ff(n,:)=[ 1 1 2 5 0]; f(n)=(F45*x(4)-F56*x(5)- 
      (k1+k2*x(5))*x(5)*AF(5)*h(5)-x(5)*(F45-F56))/(AF(5)*h(5)+SM);   
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      n=n+1; ff(n,:)=[ 1 1 2 6 0]; f(n)=(F56*x(5)-F6M*x(6)- 
      (k1+k2*x(6))*x(6)*AF(6)*h(6)-x(6)*(F56-F6M))/(AF(6)*h(6)+SM);     
 
 
      % OTHER VARIABLES 
      n=n+1; ff(n,:)=[ 1 1  9 1 0]; f(n)=F1M - beta1M*sign(h(1)- 
  h(2))*sqrt(abs(h(1)-h(2)));%  [Ml/day]  
 
 
      n=n+1; ff(n,:)=[ 1 1 12 1 0]; f(n)=F34 - beta34*sign(h(3)- 
  h(4))*sqrt(abs(h(3)-h(4)));%  [Ml/day]  
 
      n=n+1; ff(n,:)=[ 1 1 13 1 0]; f(n)=F45 - beta45*sign(h(4)- 
  h(5))*sqrt(abs(h(4)-h(5)));%  [Ml/day]  
 
      n=n+1; ff(n,:)=[ 1 1 14 1 0]; f(n)=F56 - beta56*sign(h(5)- 
  h(6))*sqrt(abs(h(5)-  h(6)));%  [Ml/day]  
 
      n=n+1; ff(n,:)=[ 1 1 15 1 0]; f(n)=F6M - beta6M*sign(h(6)-  
  h(2))*sqrt(abs(h(6)-  h(2)));%  [Ml/day]  
 
     n=n+1; ff(n,:)=[ 1 1  8 1 0]; f(n)=FR  - alpha*F2S;         
 
     n=n+1; ff(n,:)=[ 1 1  5 1 0]; f(n)=xR  - x(2);           
 
       n=n+1; ff(n,:)=[ 1 1  6 1 0]; f(n)=xM  -  
  (F1M*x(1)+F6M*x(6))/(F1M+F6M+SM);   %  [ppm] 
        
        
      
      % ----------------------TO BE SET BY USER ABOVE----------------------- 
         
         
      % STORE COUNT 
      nf=n;  % No of equations 
       
      if INIT 
     
         INIT = 0; 
               
   % Selections to be included in solution 
       nfs  = sum(ff(1:nf,1));     % Number of selected functions 
   nys  = sum(yy(1:ny,2));     % Number of selected variables 
         nss  = sum(yy(1:ns,2));    % Number of selected states only 
         if nf>ns 
            nos  = sum(ff(ns+1:nf,1));  % Will include all selected  
              % equations plus states if observed 
         else 
            nos = 0; 
         end 
         noss = 0; 
         for i=1:ns 
            if ((yy(i,2)==1) & (yy(i,3)==1)) 
               nos  = nos + 1; % Number of selected & observed variables 
               noss = noss + 1;  % Number of observed states 
            end 
         end 
          
   R=sparse(nos,nos); 
         Q=sparse(nys,nys); 
         Jy=sparse(nys,nys); 
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         if noss>0 
            Lt=sparse(noss,nss);  % Selection matrix for observed states 
         end 
         if LOADLASTMT 
            load LASTMT;                  % Mt from last run 
         else  
            Mt=Mt_START*speye(nys,nys);   % Initialise filter covariance 
              % matrix (sparse) 
         end 
         M0=sparse(nys,nys);       % zeros 
         K=sparse(nys,nos);               % Set up Kalman gain matrix 
         us=zeros(nys,1); 
 
   % make lookup tables 
   jy=zeros(nys,1); 
         i=0;   
         for j=1:ny 
            if yy(j,2)==1                
               i=i+1; 
               jy(i)=j; 
      end 
         end 
   jf=zeros(nfs,1); 
         i=0;   
         for j=1:nf 
      if ff(j,1)==1 
               i=i+1; 
               jf(i)=j; 
      end 
         end 
         % lookup table for yy parameters 
         luyy=zeros(ny,C*M,6); 
         ilast=0; 
         for j=1:ny 
            i=yy(j,1); 
            if ilast~=i 
               ilast=i; 
               icounter=1; 
            else 
               icounter=icounter+1; 
            end 
            luyy(i,icounter,:)=yy(j,:); 
         end 
          
         % R Matrix 
         i=0; 
         for j=1:ns 
            if ((yy(j,2)==1)&(yy(j,3)==1)) 
               i=i+1; 
           if yy(j,4)<=0 
            R(i,i)=(Rfactor*yy(j,4)*yo_err_factor)^2; 
           else 
              R(i,i)= (Rfactor*yy(j,4)*yo_err_factor*max(yy(j,6)- 
      yy(j,5),minrange)/QR100)^2; 
               end 
            end 
         end 
         if nf>ns 
            for j=ns+1:nf 
               if ff(j,1)==1 
                  i=i+1; 
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                  kk=ff(j,3);  % lookup indices 
                  if ff(j,5)==0 
                     icounter=ff(j,4);  % i index only 
                  else 
                     icounter=(ff(j,4)-1)*M+ff(j,5);  % i & j indices 
                  end 
                  if ff(j,2)>0 
                     R(i,i)=  
       (Rfactor*f_err_factor*ff(j,2)*max(luyy(kk,icounter,6)- 
       luyy(kk,icounter,5),minrange)/QR100)^2;  
                  else 
                     R(i,i)= (Rfactor*f_err_factor*ff(j,2))^2;                      
                  end 
               end 
            end 
         end 
          
         % Q Matrix 
         i=0; 
   for j=1:ns   
      if ff(j,1)==1 
               i=i+1;  
               kk=ff(j,3);  % lookup index 
               if ff(j,5)==0 
                  icounter=ff(j,4);  % i index only 
               else 
                  icounter=(ff(j,4)-1)*M+ff(j,5);  % i & j indices 
               end 
               if ff(j,2)>0 
                  Q(i,i)= (f_err_factor*ff(j,2)*max(luyy(kk,icounter,6)- 
      luyy(kk,icounter,5),minrange)/QR100)^2;  
               else 
                  Q(i,i)= (f_err_factor*ff(j,2))^2;                       
               end 
      end 
   end 
         if ny>ns 
          for j=ns+1:ny   
               if yy(j,2)==1 
                  if yy(j,3)==1  % observed ? 
                     factor=yo_err_factor; 
                  else 
                     factor=yu_err_factor; 
                  end 
                i=i+1; 
                % Q Matrix 
            if yy(j,4)<=0 
             Q(i,i)=(yy(j,4)*factor)^2; 
            else 
               Q(i,i)= (yy(j,4)*factor*max(yy(j,6)-
yy(j,5),minrange)/QR100)^2; 
            end 
       end 
            end 
         end 
          
         % Check 
         if i~=nys 
            printf('\n\n #### ERROR #### Must Select Same Equations as  
       States ! \n\n'); 
            halt; 
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         end 
           
   fs  = zeros(nfs,1);  % selected function values 
         ys  = zeros(nys,1);    % selected variables 
         ysR = zeros(nys,nDMC);  % to keep present states (Cl2 only) for  
           % each solution 
         ws  = zeros(nos,1);  % selected & observed variables 
         zos = zeros(nys-nss,1); % partly observed, partly previous values 
          
      end 
 
    if ne==1 
       f0=f; 
     else 
       for i=1:nfs 
            df=f(jf(i))-f0(jf(i)); 
          Jy(i,jj)=df/dyjj; 
       end 
       y(jy(jj))=y(jy(jj))- dyjj; 
      end 
      if ne==(1+nys) 
         break;       % break out of the n_evals loop 
      end 
   end   
 f = f0;   % back to original position  
 % load fs selection from f 
 for i=1:nfs 
    fs(i)=f(jf(i)); 
   end 
    
   % Fill out yo vector 
 for i=1:ny 
      if (yy(i,3)~=1) 
         yo(i)=y(i); 
      end 
   end 
    
   % SOLVE 
    
   % Set zos,ys and first part of ws 
   io=0; 
 for i=1:nss 
      ys(i)=y(jy(i)); 
      if yy(jy(i),3)==1 
         io=io+1; 
         ws(io)=yo(jy(i)); 
         Lt(io,i)=1;   % Selection Matrix 
      end 
   end 
   if nys>nss 
      for i=nss+1:nys 
         % #### ys(i)=y(jy(i));               
         zos(i-nss)=yo(jy(i)); 
      end 
   end 
    
   if REEVALUATE 
    AA = Jy(1:nss,1:nss); 
    BB = Jy(1:nss,nss+1:nys); 
    CC = Jy(nss+1:nfs,1:nss); 
      DD = Jy(nss+1:nfs,nss+1:nys); 
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    Et = -speye(nys-nss,nys-nss)/Tau; 
    P = sparse(nys,nys); 
    P(1:nss,1:nss) = AA; 
    P(1:nss,nss+1:nys) = BB; 
    P(nss+1:nys,nss+1:nys) = Et; 
    
    % for singular P use series to find "expmPdt_IdivP" = [expm(P*dt)- 
  %I]*P^-1 
    change=99; 
    expmPdt_IdivP=dt*speye(nys,nys);       
    changemat=dt*speye(nys,nys);             
    Pdt=P*dt;            
      n=1; 
    while change>tol  
       n=n+1;          
       changemat=(changemat*Pdt)/n;     
       change=sum(sum(abs(changemat)));  % makes a 1-by-n vector with 
               % the sum of the columns as  
               % its entries 

         expmPdt_IdivP=expmPdt_IdivP+changemat; 
         if n> 1000 
            n 
            break; 
         end 
    end; 
    
    % Now integrate using matrix exponential 
    At=expmPdt_IdivP*P+speye(nys,nys); 
      Bt=expmPdt_IdivP;  
       
    % Observation Matrix 
    Ct=sparse(nos,nys); 
    if noss>0 
       Ct(1:noss,1:nss)=Lt; 
    end 
    Ct(noss+1:nos,1:nss)=CC; 
      Ct(noss+1:nos,nss+1:nys)=DD; 
   end; 
    
   % Working Vectors 
   Ft = fs(1:nss) - AA*ys(1:nss) - BB*ys(nss+1:nys); 
   Gt = fs(nss+1:nfs) - CC*ys(1:nss) - DD*ys(nss+1:nys); 
   Ht = zos/Tau; 
       
   % Augmented System 
   us(1:nss) = Ft; 
   us(nss+1:nys) = Ht; 
    
   % Load rest of Observation Vector ws (first part loaded above) 
   for i=noss+1:nos 
      ws(i)=-Gt(i-noss); 
   end 
    
   % KALMAN FILTER 
   nKint=nKint+1; 
   nKcomp=nKcomp+1; 
   if (nKint>Kint)|(nKcomp<=Kcomp) 
      nKint=1; 
   end 
   if nKint==1     % re-evaluate Kalman 'K' every 'Kint' steps only    
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      if FirstK==1 
         repeat=nFirstKrecalc;  % to get initial convergence 
         FirstK=0; 
      else 
         repeat=1; 
      end; 
      for nKrecalc=1:repeat 
   % K = Mt*Ct'*inv(Ct*Mt*Ct'+ R); 
       CMCR=Ct*Mt*Ct'+ R; 
       CM=Ct*Mt; 
       K=(CMCR\CM)'; 
       Mt = At*(speye(nys,nys) - K*Ct)*Mt*At' + Q; 
       MP=Mt-SMM*spones(Mt); 
       MP=max(M0,MP);     % chop off low positives 
       MN=Mt+SMM*spones(Mt); 
       MN=min(MN,M0);     % chop off small negatives 
       Mt=MP+MN; 
         [nzmax(K) nnz(K) nzmax(Mt) nnz(Mt)] 
      end 
   end 
     
   yslast=ys; 
    
   % Actually operate the filter... 
   ys = At*ys + Bt*us + K*(ws-Ct*ys);  
          
   % clipping 
   upperclip=0; 
   for j=1:nys 
      if ys(j)<yy(jy(j),5) 
         ys(j)=yy(jy(j),5);   % low clip 
         ylimflag(jy(j),2)=1; 
         ylimflag(jy(j),3)=yy(jy(j),5); % low limit value 
         ylimflag(jy(j),4)=yy(jy(j),1); % reference index 
      else 
         if ys(j)>yy(jy(j),6) 
            ys(j)=yy(jy(j),6);    % high clip 
            ylimflag(jy(j),2)=2; 
            upperclip=99; 
          ylimflag(jy(j),3)=yy(jy(j),6); % low limit value 
          ylimflag(jy(j),4)=yy(jy(j),1); % reference index 
         else 
            ylimflag(jy(j),2)=0; 
          ylimflag(jy(j),3)=-99;  % no limit effective 
          ylimflag(jy(j),4)=0;  % no reference index 
         end 
      end     
   end 
    
   err2=0; 
   err2_deriv=0; 
   ntotvar=0; 
   ntotderiv=0; 
   i=0; 
   for j=1:nss 
      if yy(jy(j),3)==1 
         i=i+1; 
         err2 = err2 + ((ys(j)-yo(jy(j)))*yo_err_factor)^2/R(i,i);  % 
observed states 
         ntotvar=ntotvar+1; 
      end 
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   end 
   for j=nss+1:nys 
      if yy(jy(j),3)==1 
         err2 = err2 + ((ys(j)-yo(jy(j)))*yo_err_factor)^2/Q(j,j);   
   % errors in observed 'z' 
         ntotvar=ntotvar+1; 
      end 
   end 
   i=noss; 
   ii=0; 
   for j=1:nf 
      if j<=ns 
         if ff(j,1)==1     % selected equation / state 
            ii=ii+1; 
            err2_deriv = err2_deriv + (f(j)*f_err_factor)^2/Q(ii,ii);  
     % derivatives 
            ntotderiv=ntotderiv+1; 
         end          
      else 
         if ff(j,1)==1     % selected equation 
            i=i+1; 
            err2 = err2 + (f(j)*f_err_factor)^2/R(i,i);   
    % compensate for the factor in RR 
            ntotvar=ntotvar+1; 
         end 
      end 
   end 
    
   wt_ob_er = sqrt(err2/ntotvar); % to see how well it is doing  
   wt_deriv_er = dt*sqrt(err2_deriv/ntotderiv); % to see how unsteady the 
                % process should be compared  
                % with actual 
 
   % load back to full vector 
 for i=1:nys 
       y(jy(i))=ys(i); 
 end 
       
   %***************************************************************** 
 %                       * 
 %       STORE FOR PLOTTING            * 
 %                         * 
 %***************************************************************** 
 
   if (t-tlastplot)>=(0.9*dtplot)   
      iplot=iplot+1; 
      tp(iplot)=t-dt; % NOTE: these are one step out, thus dt subtracted 
      tlastplot = t; 
      % PREDICTIONS 
      for i=1:C 
       hP(iplot,i)    =h(i);    % Level in the differents compartments [m]  
       xP(iplot,i)    =x(i);    % Chlorine level in compartment [ppm] 
      end 
      xRP(iplot)        =xR;    % chlorine in total outflow [ppm]       
      xMP(iplot)        =xM;   % chlorine in total outflow [ppm]       
      x0P(iplot)        =x0;   % chlorine in total inflow [ppm] 
   F0P(iplot)        =F0;   % total flow to reservoir [Ml/day] 
      FRP(iplot)      =FR;   % total flow from reservoir [Ml/day] 
      hMP(iplot)      =hM;      % level at the mixing point 
      alphaP(iplot)     =alpha;  % split fraction for total reservoir feed 
      F1MP(iplot)      =F1M;         
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      FM2P(iplot)      =FM2;         
      F2SP(iplot)      =F2S;         
      F34P(iplot)      =F34;        
      F45P(iplot)      =F45;         
      F56P(iplot)      =F56;         
      F6MP(iplot)      =F6M;         
      k1P(iplot)      =k1;    % 1st order rate constant [/day] 
 
      % OBSERVATIONS 
      for i=1:C 
       hoP(iplot,i)   =ho(i);                
       xoP(iplot,i) =xo(i);                    
      end 
      xRoP(iplot)     =xRo;                   
      xMoP(iplot)     =xMo;                   
      x0oP(iplot)     =x0o;             
   F0oP(iplot)     =F0o;         
      FRoP(iplot)      =FRo;         
      hMoP(iplot)      =hMo;         
      alphaoP(iplot)  =alphao;        
      F1MoP(iplot)      =F1Mo;       
      FM2oP(iplot)      =FM2o;       
  F2SoP(iplot)      =F2So;       
      F34oP(iplot)      =F34o;       
      F45oP(iplot)      =F45o;       
      F56oP(iplot)      =F56o;       
      F6MoP(iplot)      =F6Mo;       
      k1oP(iplot)      =k1o;              
      wtd_obs_err(iplot)=wt_ob_er; 
      wtd_deriv_err(iplot)=wt_deriv_er; 
      xR_spP(iplot)=xR_sp; 
 
      % save chlorine caLculation 
       
      results(iplot,1)=tp(iplot); 
      results(iplot,2)=x0P(iplot); 
      results(iplot,3)=xR_spP(iplot);       
      results(iplot,4)=xRP(iplot); 
  
   end 
    
   %***************************************************************** 
 %                       * 
 %       DYNAMIC MATRIX CONTROL         * 
 %                         * 
 %***************************************************************** 
    
   % Also step all offset solutions to find step response for DMC control 
   if tlast==0   % must initialise solutions 
      ysR=zeros(nys,nDMC); 
      for k=1:nDMC 
         ysR(:,k)=yslast;   % initialise all at last ys 
      end 
   end 
   for k=1:nDMC 
      %  need to find 'f' again  
       n=0; 
    for i=1:C n=n+1;  h(i)  =ysR(n,k); end; % [m]  
    for i=1:C n=n+1;  x(i)  =ysR(n,k); end; % [m]  
    n=n+1;            hM    =ysR(n,k);      % [m]  
    n=n+1;            x0    =ysR(n,k);      % [ppm]  
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    n=n+1;            xR    =ysR(n,k);      % [ppm]  
    n=n+1;            xM    =ysR(n,k);      % [ppm]  
    n=n+1;            F0    =ysR(n,k);      % [Ml/day]  
    n=n+1;            FR    =ysR(n,k);      % [Ml/day]  
    n=n+1;            F1M   =ysR(n,k);      % [Ml/day]  
    n=n+1;            FM2   =ysR(n,k);      % [Ml/day]  
    n=n+1;            F2S   =ysR(n,k);      % [Ml/day]  
    n=n+1;            F34   =ysR(n,k);      % [Ml/day]  
    n=n+1;            F45   =ysR(n,k);      % [Ml/day]  
    n=n+1;            F56   =ysR(n,k);      % [Ml/day]  
    n=n+1;            F6M   =ysR(n,k);      % [Ml/day]  
      n=n+1;            alpha =ysR(n,k);      % [-]  
      n=n+1;            k1    =ysR(n,k);      % [/day]  
      n=n+1;            k2    =ysR(n,k);      % [/(ppm.day)]  
    n=n+1;            hR    =ysR(n,k);      % [m]  
      n=0;   
      n=n+1; f(n)=(F0-F1M)/AF(1);;         % dh/dt [m/day]  
      n=n+1; f(n)=(F1M+F6M-F2S)/AF(2);     % dh/dt [m/day]  
      n=n+1; f(n)=((1-alpha)*F2S-F34)/AF(3);  % dh/dt [m/day]  
      n=n+1; f(n)=(F34-F45)/AF(4);     % dh/dt [m/day]  
      n=n+1; f(n)=(F45-F56)/AF(5);     % dh/dt [m/day]  
      n=n+1; f(n)=(F56-F6M)/AF(6);     % dh/dt [m/day]  
 
         
         
      n=n+1; f(n)=(F0*x0-F1M*x(1)... 
             -(k1+k2*x(1))*x(1)*AF(1)*h(1)-x(1)*(F0-F1M))/(AF(1)*h(1)+SM);      
 
      n=n+1; f(n)=((F1M+F6M)*xM-F2S*x(2)... 
             -(k1+k2*x(2))*x(2)*AF(2)*h(2)-x(2)*(F1M+F6M- 
    F2S))/(AF(2)*h(2)+SM);   
 
      n=n+1; f(n)=((1-alpha)*F2S*x(2)-F34*x(3)... 
             -(k1+k2*x(3))*x(3)*AF(3)*h(3)-x(3)*((1-alpha)*F2S- 
     F34))/(AF(3)*h(3)+SM);   
 
      n=n+1; f(n)=(F34*x(3)-F45*x(4)... 
             -(k1+k2*x(4))*x(4)*AF(4)*h(4)-x(4)*(F34-F45))/(AF(4)*h(4)+SM);   
 
  n=n+1; f(n)=(F45*x(4)-F56*x(5)... 
             -(k1+k2*x(5))*x(5)*AF(5)*h(5)-x(5)*(F45-F56))/(AF(5)*h(5)+SM);   
 
  n=n+1; f(n)=(F56*x(5)-F6M*x(6)... 
             -(k1+k2*x(6))*x(6)*AF(6)*h(6)-x(6)*(F56-F6M))/(AF(6)*h(6)+SM);      
        
      % OTHER VARIABLES 
      n=n+1; f(n)=F1M - beta1M*sign(h(1)-h(2))*sqrt(abs(h(1)-h(2))); 
   
      n=n+1; f(n)=F34 - beta34*sign(h(3)-h(4))*sqrt(abs(h(3)-h(4))); 
 
      n=n+1; f(n)=F45 - beta45*sign(h(4)-h(5))*sqrt(abs(h(4)-h(5))); 
 
      n=n+1; f(n)=F56 - beta56*sign(h(5)-h(6))*sqrt(abs(h(5)-  h(6))); 
  
      n=n+1; f(n)=F6M - beta6M*sign(h(6)- h(2))*sqrt(abs(h(6)-  h(2))); 
 
      n=n+1; f(n)=FR  - alpha*F2S;              
 
      n=n+1; f(n)=xR  - x(2);                
 
      n=n+1; f(n)=xM  - (F1M*x(1)+F6M*x(6))/(F1M+F6M+SM);    
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        for i=1:nfs 
           fs(i)=f(jf(i)); 
        end 
         
         
         
      Ft = fs(1:nss) - AA*ysR(1:nss,k) - BB*ysR(nss+1:nys,k); 
      Gt = fs(nss+1:nfs) - CC*ysR(1:nss,k) - DD*ysR(nss+1:nys,k); 
      Ht = zos/Tau; 
      % offset the input   
      Ht(2) = (zos(2)+stepIN)/Tau;   %BEWARE - THIS INPUT POSITION COULD  
             %CHANGE !!!!!! 
      % Augmented System 
      us(1:nss) = Ft; 
      us(nss+1:nys) = Ht; 
      % Load rest of Observation Vector ws (first part loaded above) 
      for i=noss+1:nos 
         ws(i)=-Gt(i-noss); 
      end 
      ysR(:,k) = At*ysR(:,k) + Bt*us + K*(ws-Ct*ysR(:,k)); % step it 
   end 
 
 
   % Step response at the bigger interval  
   if (t-tlast_step)>=dtDMC 
      icount=icount+1; 
      tlast_step=t; 
      % Now get the step response by comparison 
      for k=1:nDMC  
         ipos=ipointer-k+1;  % ipointer will be on the youngest point 
         if ipos<1 
            ipos=ipos+nDMC;   % wrap 
         end     
         resp(k)=(ysR(2*C+3,ipos)-ys(2*C+3))/stepIN;  % unit step response :  
                 % Beware: THIS POSITION IS EXIT Cl2 
      end  
      ipointer=ipointer+1;  % this will be the oldest 
      if ipointer>nDMC 
         ipointer=1; 
      end 
      % Push this one down to reference trajectory 
      ysR(:,ipointer)=ys; 
      % Initialise DMC 
      if icount==1   % first call 
         DM=zeros(nDMC,nDMC);        % Dynamic Matrix (use a simple square 
             % system) 
         DMol=zeros(nDMC,nDMC);      % Openloop Matrix  
         DM0=zeros(nDMC,nDMC);       % Measurement Offset Matrix 
         % Initialise counter for Control Time Steps 
         ncount=0; 
         % Initilaise vector of previous control moves 
         dmpast=zeros(nDMC,1); 
         % Set up Tuning Matrices WW & Lam 
         WW=zeros(nDMC,nDMC); 
         for i=1:nDMC 
            WW(i,i)=10000;      
         end 
         Lam=1;             
         % Limits for Output 
         mmax=4.0; 
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         mmin=0.2; 
         x0o_last=x0o; 
      end 
       
      % Is Closed-loop Control Required ? ---------------------------------- 
      if t>1 
          auto=1; 
      end 
      if auto & (icount>=nDMC)    % must also have filled step response 
          if t>0 
              xR_sp=0.8; 
          end 
          if t>1   % [days] 
              xR_sp=1; 
           end 
            
           % now find new value for x0_sp 
          % DYNAMIC MATRIX CONTROL ALGORITHM (BELOW)*********************** 
          % Make Dynamic Matrix DM 
          for i=1:nDMC 
             for j=1:i 
                jj=i-j+1; 
                DM(i,j)=resp(jj); 
             end 
          end 
          % Make Openloop Matrix DMol & Offset Measurement Matrix DM0 
          for i=1:nDMC 
             for j=1:nDMC 
                jj=min(nDMC,nDMC+i-j+1); 
                DMol(i,j)=DM(nDMC,nDMC+1-jj);   % pick off backwards along 
                % bottom line of DM 
                jjj=nDMC-j+1; 
                DM0(i,j)=DM(nDMC,j); 
             end 
          end 
          % Present value of controlled variable 
          xR=ys(2*C+3);  % Beware: THIS POSITION IS EXIT Cl2 
 
          % Openloop error trajectory 
          eol=ones(nDMC,1)*(xR-xR_sp)+(DMol-DM0)*dmpast;  
 
          % only one move, so only 1st col of DM 
          DMs=DM(:,nopt); 
 
          % only do least squares part, not constrained search 
          dmopt=-inv(DMs'*WW*DMs+Lam)*DMs'*WW*eol; 
          mpresent=x0o; 
          mnew=mpresent+dmopt; 
          % Clip externally to limits 
 
          mnew=min(mmax,max(mmin,mnew));    
          dmused=mnew-mpresent; 
          x0_set=mnew; 
       else 
          dmused=x0o-x0o_last;   
       end 
       % Update past moves vector 
       for i=1:(nDMC-1) 
          dmpast(i)=dmpast(i+1); 
       end 
       dmpast(nDMC)=dmused;  % newest move at bottom of vector 
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       x0o_last=x0o; 
   end 
   % end of DMC control -------------------------------------------------    
end 
 
% Store the last working variables 
k1L=k1;           % [/day]      
k2L=k2;           % [/(day.ppm)]      
alphaL=alpha; 
F0L=F0;    
FRL=FR;      
x0L=x0;          % chlorine in total inflow [ppm] 
xRL=xR;            % chlorine in total outflow [ppm] 
xML=xM;            % chlorine in total outflow [ppm] 
hML=hM;  
hRL=hR;  
F1ML=F1M; 
F2SL=F2S; 
FM2L=FM2; 
F34L=F34; 
F45L=F45; 
F56L=F56; 
F6ML=F6M; 
hL=h;               % Level  [m]  
xL=x;                 % Chlorine level in outflow [ppm] 
yL=y; 
yoL=yo; 
save LASTVAR k1L k2L alphaL F0L FRL x0L xRL xML hML hRL F1ML F2SL FM2L F34L 
F45L F56L F6ML hL xL yL yoL; 
save LASTMT Mt; 
save LASTLIM ylimflag; 
 
% ----------------------TO BE SET BY USER BELOW----------------------------- 
 
% Draw graphs 
%plot(tp(1:p),x0oP(1:p),'rx',tp(1:p),x0P(1:p),'b:',tp(1:p),xRoP(1:p),'b:',tp
(1:p), xRP(1:p),'m',tp(1:p),xR_spP(1:p),'yx'); 
%legend('x0','x0P','xRo','xRP','xr_setpoint'); 
 
p=iplot; 
 
figure(1); 
plot(tp(1:p),x0P(1:p),'b:',tp(1:p),xR_spP(1:p),'yx',tp(1:p), xRP(1:p),'m') 
axis([0 tp(iplot) 0.6 1.6]); 
xlabel('time (day)') 
ylabel('chlorine concentration mg/L') 
%title('24/09/01 to 30/09/01, with kfit = 0.003*F-0.025*L+0.3*C+50*exp(1/T)-
51.9, temp = 20 C') 
figure(2); 
plot(tp(1:p),F0P(1:p),'r-',tp(1:p),FRP(1:p),'b-
',tp(1:p),F0oP(1:p),'ro',tp(1:p),FRoP(1:p),'bo'); 
legend('F0','FR','F0o','FRo'); 
axis([0 tp(iplot) 0 240]); 
xlabel('time (day)') 
ylabel('Ml/d') 
 
figure(3); 
plot(tp(1:p),hP(1:p,1),'r-
',tp(1:p),hoP(1:p,1),'ro',tp(1:p),xP(1:p,1),'r:',tp(1:p),xoP(1:p,1),'rx',tp(
1:p),hRP(1:p),'m--'); 
legend('h1','ho1','x1','xo1','hR'); 
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axis([0 tp(iplot) -10 8]); 
xlabel('time (day)') 
ylabel('level (m)') 
 
figure(4); 
plot(tp(1:p),hP(1:p,2),'g-',tp(1:p),hoP(1:p,2),'g--
',tp(1:p),xP(1:p,2),'g:',tp(1:p),xoP(1:p,2),'gx',tp(1:p),hRP(1:p),'m--'); 
legend('h2','ho2','x2','xo2','hR'); 
axis([0 tp(iplot) 0 8]); 
xlabel('time (day)') 
 
figure(5); 
plot(tp(1:p),hP(1:p,3),'b-
',tp(1:p),hoP(1:p,3),'bo',tp(1:p),xP(1:p,3),'b:',tp(1:p),xoP(1:p,3),'bx',tp(
1:p),hRP(1:p),'m--'); 
legend('h3','ho3','x3','xo3','hR'); 
axis([0 tp(iplot) 0 8]); 
xlabel('time (day)') 
 
figure(6); 
plot(tp(1:p),hP(1:p,4),'c-
',tp(1:p),hoP(1:p,4),'co',tp(1:p),xP(1:p,4),'c:',tp(1:p),xoP(1:p,4),'cx',tp(
1:p),hRP(1:p),'m--'); 
legend('h4','ho4','x4','xo4','hR'); 
axis([0 tp(iplot) 0 8]); 
xlabel('time (day)') 
 
figure(7); 
plot(tp(1:p),k1P(1:p),'bl-',tp(1:p),k1oP(1:p),'blo'); 
legend('k1','k1o'); 
axis([0 tp(iplot) 0 5]); 
xlabel('time (day)') 
ylabel('k (/day)') 
 
figure(8); 
plot(tp(1:p),k2P(1:p),'m-',tp(1:p),k2oP(1:p),'mo'); 
legend('k2','k2o'); 
axis([0 tp(iplot) 0 10]); 
xlabel('time (day)') 
 
figure(9); 
plot(tp(1:p),alphaP(1:p),'r-',tp(1:p),alphaoP(1:p),'ro'); 
legend('alpha','alphao'); 
axis([0 tp(iplot) 0 1]); 
xlabel('time (day)') 
 
figure(11); 
plot(tp(1:p),wtd_deriv_err(1:p),'b'); 
legend('wtd-deriv-err'); 
 
figure(12); 
plot(tp(1:p),wtd_obs_err(1:p),'r'); 
legend('wtd-obs-err'); 
 
 
% ----------------------TO BE SET BY USER ABOVE----------------------------- 
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APPENDIX D 
 

TABLE D-1: INTERPRETATION  OF VARIABLES IN 

ADROIT SCRIPT PROGAM (VISUAL BASIC) 

 

Interval time between two runs (tP) dt_mod 

Internal time to the EKF dt_kal 

Internal time to the DMC dt_dmc 

Inlet flow rate F0_data 

Level H_data 

Measured inlet chlorine concentration (C0) x0_data 

Measured outlet chlorine concentration (C) xr_data 

Outlet chlorine concentration set-point xr_sp 

Kalman gain ε alpha 

DMC gain β beta 

Calculated inlet chlorine concentration (CDMC) x0_mod 

Calculated outlet chlorine concentration xr_mod 

Last calculated inlet chlorine concentration x0_mod_last 

Last calculated outlet chlorine concentration xr_mod_last 

Kalman filter matrix K k_kal 

Calculated kinetic factor kk_kal 
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Smooth inlet chlorine concentration (Cfilter) x0_data_slow 

Smooth inflow rate (Ffilter) F0_data_slow 

Smooth pump flow rate (Pfilter) pump_data_slow 

Inlet chlorine concentration estimated for a 

certain value of the pump flow rate and the 

inflow rate (Cpump) 

x0_pred 

Observed pump flow rate (P) pump_data 

Pump setting (Psetting) pump_setting 

Automatic (DMC is triggered) auto 

Control moves number nopt 

Optimisation steps to the horizon (P) nDMC 

∆m B 

∆mUQO dmopt 

∆mPAST dmpast 

eOL eol 

BOL Bol 

B0 B0 

Λ lam 

W W 
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APPENDIX E 

 

  ADROIT SCADA System : Visual Basic Program 

 
Sub fnAdd() 

 

 

' Tags to be set up so that values can be changed on-line 

 

'Pump feedforward model parameters 

GRADPUMP = 6.15 

INTPUMP = 94.5 

FLOWPROTECT = 1 

 

auto = Adroit.GetTag("AUTO.value")                     'auto/manual 

F0_data = Adroit.GetTag("FIT20144.value")              'flow inlet 

Fr_data = Adroit.GetTag("712IN001QI670AINT.value")     'flow outlet 

H_data = Adroit.GetTag("712PL001LI701AI.value")        'level 

x0_data = Adroit.GetTag("712CR001QI601AI.value")       'chlorine concentration inlet 

xr_data = Adroit.GetTag("712PL001QI6211AI.value")      'chlorine concentration outlet ###### WORKS 

pump_data = Adroit.GetTag("FI29007_AO.value") 

x0_pred = (GRADPUMP * pump_data + INTPUMP) / (F0_data + FLOWPROTECT) 

Adroit.SetTag "X0PRED.value", x0_pred 

 

alpha = Adroit.GetTag("ALPHA.value")                   ' Kalman filter tuning: filter gain 

beta = Adroit.GetTag("BETA.value")                     ' DMC tuning: DMC gain 

delta = Adroit.GetTag("DELTA.value") / 1000            ' should be 1.5  (means 0.0015 actually): factor of 1000 so can see 0.001 on 

screen !!!! 

 

xr_sp = Adroit.GetTag("XR-SP.value")                   ' chlorine setpoint 

 

sec = Adroit.GetTag("systemInfo.second") 

minu = Adroit.GetTag("systemInfo.minute") 

hr = Adroit.GetTag("systemInfo.hour") 

 

time_now = hr * 3600 + minu * 60 + sec 

 

'flag for first step  Set at startup 

 

first_mod_step = Adroit.GetTag("CALL.value") 

 

'Normal scan  START 

            

'initialisation 

         

' (1) Kalman filter parameter 

dt_kal_factor = 20 
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' (2) DMC parameters 

dt_dmc_factor = 36     'time step multiple for DMC 

ndmc = 40              'time horizon 

nopt_dmc = 2           'number of optimised control moves 

pump_set_min = 0 

pump_set_max = 50 

         

Dim dmpast(40)        'past moves matrix 

Dim b(40)             'step response vector 

Dim BB(40, 40)        'Future dynamic matrix 

Dim Bol(40, 40)       'Past dynamic matrix 

Dim B0(40, 40)        'Present dynamic matrix 

Dim eol(40, 40) 

Dim z(40, 40) 

Dim Admc(40, 40) 

Dim W(40, 40) 

Dim lam(40, 40) 

Dim L(40, 40) 

Dim WA(40, 40) 

Dim AWA(40, 40) 

Dim Weol(40, 40) 

Dim AWeol(40, 40) 

Dim h(40, 40) 

Dim c(40, 40) 

Dim g(40, 40) 

Dim L_inv(40, 40) 

         

If dt_kal_factor < 1 Or dt_dmc_factor < dt_kal_factor Then 

  Adroit.SetTag "TIME-ALARM.value", "TIME-ALARM"    'system error report 

End If 

Adroit.SetTag "TIME-ALARM.value", "" 

 

' Re initialize if requested 

 

If first_mod_step = 1 Then 

 

        'initialise 

        first_mod_step = 0 

        Adroit.SetTag "CALL.value", first_mod_step        ' toggle 

         

        ' initialize time of previous call 

        time_lastcall = time_now 

 

        ' Kalman filter time gap : initialize earlier to force an execute 

        t_kal = 0 

 

        ' DMC time gap : initialize earlier to force an execute 

        t_dmc = 0 

 



 APPENDIX E

 

E-3 

        'rate constant guess MM020919 

        kk_kal = 1.1 

        M_kal = 0.01 

 

        'initial state 

        x0_pred_kflast = x0_pred 

        x0_pred_dmclast = x0_pred 

        xr_data_kflast = xr_data 

 

        ' zero entire "dmpast " vector 

        Adroit.SetTag ("D1.value"), 0 

        Adroit.SetTag ("D2.value"), 0 

        Adroit.SetTag ("D3.value"), 0 

        Adroit.SetTag ("D4.value"), 0 

        Adroit.SetTag ("D5.value"), 0 

        Adroit.SetTag ("D6.value"), 0 

        Adroit.SetTag ("D7.value"), 0 

        Adroit.SetTag ("D8.value"), 0 

        Adroit.SetTag ("D9.value"), 0 

        Adroit.SetTag ("D10.value"), 0 

        Adroit.SetTag ("D11.value"), 0 

        Adroit.SetTag ("D12.value"), 0 

        Adroit.SetTag ("D13.value"), 0 

        Adroit.SetTag ("D14.value"), 0 

        Adroit.SetTag ("D15.value"), 0 

        Adroit.SetTag ("D16.value"), 0 

        Adroit.SetTag ("D17.value"), 0 

        Adroit.SetTag ("D18.value"), 0 

        Adroit.SetTag ("D19.value"), 0 

        Adroit.SetTag ("D20.value"), 0 

        Adroit.SetTag ("D21.value"), 0 

        Adroit.SetTag ("D22.value"), 0 

        Adroit.SetTag ("D23.value"), 0 

        Adroit.SetTag ("D24.value"), 0 

        Adroit.SetTag ("D25.value"), 0 

        Adroit.SetTag ("D26.value"), 0 

        Adroit.SetTag ("D27.value"), 0 

        Adroit.SetTag ("D28.value"), 0 

        Adroit.SetTag ("D29.value"), 0 

        Adroit.SetTag ("D30.value"), 0 

        Adroit.SetTag ("D31.value"), 0 

        Adroit.SetTag ("D32.value"), 0 

        Adroit.SetTag ("D33.value"), 0 

        Adroit.SetTag ("D34.value"), 0 

        Adroit.SetTag ("D35.value"), 0 

        Adroit.SetTag ("D36.value"), 0 

        Adroit.SetTag ("D37.value"), 0 

        Adroit.SetTag ("D38.value"), 0 

        Adroit.SetTag ("D39.value"), 0 

        Adroit.SetTag ("D40.value"), 0 
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Else 

        kk_kal = Adroit.GetTag("K.value") 

        M_kal = Adroit.GetTag("M.value") 

        x0_pred_kflast = Adroit.GetTag("X0PRED-KFLAST.value") 

        x0_pred_dmclast = Adroit.GetTag("X0PRED-DMCLAST.value") 

        xr_data_kflast = Adroit.GetTag("XRDATA-KFLAST.value") 

        time_lastcall = Adroit.GetTag("TIME-LASTCALL.value") 

        t_kal = Adroit.GetTag("T-KAL.value") 

        t_dmc = Adroit.GetTag("T-DMC.value") 

 

End If 

 

 

' Main loop 

 

dt_mod_normal = 5 

             

dt_mod = time_now - time_lastcall 

time_lastcall = time_now 

 

' Protection against daily clock wrap-around and other time-upsets 

If dt_mod < 0 Then 

   dt_mod = dt_mod + 24 * 3600 

End If 

If dt_mod <= 0 Or dt_mod > 4 * dt_mod_normal Then 

   dt_mod = dt_mod_normal 

End If 

 

Adroit.SetTag "TIME-LASTCALL.value", time_lastcall 

Adroit.SetTag "DT-MOD.value", dt_mod 

 

' get time steps from this 

dt_kal = dt_kal_factor * dt_mod 

dt_dmc = dt_dmc_factor * dt_mod 

dt_modd = dt_mod / (24 * 3600) 

dt_kald = dt_kal / (24 * 3600) 

dt_dmcd = dt_dmc / (24 * 3600) 

 

                 

'Present parameter 

AH = (2 * (116 * 76.5) / 1000)  'Active volume surface area [ML/d]  ''#### 

Tau = (H_data * AH) / F0_data 

Ac = -1 / Tau 

Bc = 1 / Tau 

         

'(1)  Kalman filter 

 

t_kal = t_kal + dt_mod 
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Do While t_kal > 0 

 

            t_kal = t_kal - dt_kal 

 

            R_kal = 1              'kalman R weight 

            'Clip limit 

            k_kal_min = 0 

            k_kal_max = 5 

 

            Q_kal = alpha * R_kal  'kalman Q weight 

            A_kal = Exp(Ac * dt_kald) 

            B_kal = (A_kal - 1) * (1 / Ac) * Bc 

 

            'Actual model here is 

            ' xri+1 = A_kal*xri + B_kal*x0i-k_kal*xri*dt_kal 

            ' So kalman filter for k_kal is 

            'k_kali+1 = I*k_kali + 0 +k_kal*([-xri+1+A_kal*xri+B_kal*x0i]-xri*dt_kal]*k_kali 

 

            Ak = 1 

            Bk = 0 

            Gk = xr_data_kflast * dt_kald 

            yk = -xr_data + A_kal * xr_data_kflast + B_kal * x0_pred_kflast 

            K_kal = M_kal * Gk * 1 / (Gk * M_kal * Gk + R_kal) 

            kk_kal = kk_kal + K_kal * (yk - Gk * kk_kal) 

 

         

            'clip for k 

 

            If kk_kal < k_kal_min Then 

                kk_kal = k_kal_min 

            End If 

            If kk_kal > k_kal_max Then 

                kk_kal = k_kal_max 

            End If 

             

 

            M_kal = (1 - K_kal * Gk) * M_kal + Q_kal 

            xr_data_kflast = xr_data 

            x0_pred_kflast = x0_pred 

 

            Adroit.SetTag "K.value", kk_kal 

            Adroit.SetTag "M.value", M_kal 

            Adroit.SetTag "X0PRED-KFLAST.value", x0_pred_kflast 

            Adroit.SetTag "XRDATA-KFLAST.value", xr_data_kflast 

            Adroit.SetTag "YK.value", yk 

            Adroit.SetTag "A-KAL.value", A_kal 

            Adroit.SetTag "B-KAL.value", B_kal 
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Loop 

         

'storage de t_kal 

         

Adroit.SetTag "T-KAL.value", t_kal 

 

'(2) Dmc control algorithm 

 

t_dmc = t_dmc + dt_mod 

 

Do While t_dmc > 0 

 

            t_dmc = t_dmc - dt_dmc 

 

            'load back "dmpast" vector 

             

            dmpast(1) = Adroit.GetTag("D1.value") 

            dmpast(2) = Adroit.GetTag("D2.value") 

            dmpast(3) = Adroit.GetTag("D3.value") 

            dmpast(4) = Adroit.GetTag("D4.value") 

            dmpast(5) = Adroit.GetTag("D5.value") 

            dmpast(6) = Adroit.GetTag("D6.value") 

            dmpast(7) = Adroit.GetTag("D7.value") 

            dmpast(8) = Adroit.GetTag("D8.value") 

            dmpast(9) = Adroit.GetTag("D9.value") 

            dmpast(10) = Adroit.GetTag("D10.value") 

            dmpast(11) = Adroit.GetTag("D11.value") 

            dmpast(12) = Adroit.GetTag("D12.value") 

            dmpast(13) = Adroit.GetTag("D13.value") 

            dmpast(14) = Adroit.GetTag("D14.value") 

            dmpast(15) = Adroit.GetTag("D15.value") 

            dmpast(16) = Adroit.GetTag("D16.value") 

            dmpast(17) = Adroit.GetTag("D17.value") 

            dmpast(18) = Adroit.GetTag("D18.value") 

            dmpast(19) = Adroit.GetTag("D19.value") 

            dmpast(20) = Adroit.GetTag("D20.value") 

            dmpast(21) = Adroit.GetTag("D21.value") 

            dmpast(22) = Adroit.GetTag("D22.value") 

            dmpast(23) = Adroit.GetTag("D23.value") 

            dmpast(24) = Adroit.GetTag("D24.value") 

            dmpast(25) = Adroit.GetTag("D25.value") 

            dmpast(26) = Adroit.GetTag("D26.value") 

            dmpast(27) = Adroit.GetTag("D27.value") 

            dmpast(28) = Adroit.GetTag("D28.value") 

            dmpast(29) = Adroit.GetTag("D29.value") 

            dmpast(30) = Adroit.GetTag("D30.value") 

            dmpast(31) = Adroit.GetTag("D31.value") 

            dmpast(32) = Adroit.GetTag("D32.value") 

            dmpast(33) = Adroit.GetTag("D33.value") 

            dmpast(34) = Adroit.GetTag("D34.value") 
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            dmpast(35) = Adroit.GetTag("D35.value") 

            dmpast(36) = Adroit.GetTag("D36.value") 

            dmpast(37) = Adroit.GetTag("D37.value") 

            dmpast(38) = Adroit.GetTag("D38.value") 

            dmpast(39) = Adroit.GetTag("D39.value") 

            dmpast(40) = Adroit.GetTag("D40.value") 

 

 

            'move older moves up to the stack 

            j = 1 

            Do While j < 40 

                j = j + 1 

                dmpast(j - 1) = dmpast(j) 

            Loop 

             

            dmpast(40) = x0_pred - x0_pred_dmclast 

            x0_pred_dmclast = x0_pred 

             

            Adroit.SetTag ("X0PRED-DMCLAST.value"), x0_pred_dmclast 

 

            Adroit.SetTag ("D1.value"), dmpast(1) 

            Adroit.SetTag ("D2.value"), dmpast(2) 

            Adroit.SetTag ("D3.value"), dmpast(3) 

            Adroit.SetTag ("D4.value"), dmpast(4) 

            Adroit.SetTag ("D5.value"), dmpast(5) 

            Adroit.SetTag ("D6.value"), dmpast(6) 

            Adroit.SetTag ("D7.value"), dmpast(7) 

            Adroit.SetTag ("D8.value"), dmpast(8) 

            Adroit.SetTag ("D9.value"), dmpast(9) 

            Adroit.SetTag ("D10.value"), dmpast(10) 

            Adroit.SetTag ("D11.value"), dmpast(11) 

            Adroit.SetTag ("D12.value"), dmpast(12) 

            Adroit.SetTag ("D13.value"), dmpast(13) 

            Adroit.SetTag ("D14.value"), dmpast(14) 

            Adroit.SetTag ("D15.value"), dmpast(15) 

            Adroit.SetTag ("D16.value"), dmpast(16) 

            Adroit.SetTag ("D17.value"), dmpast(17) 

            Adroit.SetTag ("D18.value"), dmpast(18) 

            Adroit.SetTag ("D19.value"), dmpast(19) 

            Adroit.SetTag ("D20.value"), dmpast(20) 

            Adroit.SetTag ("D21.value"), dmpast(21) 

            Adroit.SetTag ("D22.value"), dmpast(22) 

            Adroit.SetTag ("D23.value"), dmpast(23) 

            Adroit.SetTag ("D24.value"), dmpast(24) 

            Adroit.SetTag ("D25.value"), dmpast(25) 

            Adroit.SetTag ("D26.value"), dmpast(26) 

            Adroit.SetTag ("D27.value"), dmpast(27) 

            Adroit.SetTag ("D28.value"), dmpast(28) 

            Adroit.SetTag ("D29.value"), dmpast(29) 

            Adroit.SetTag ("D30.value"), dmpast(30) 
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            Adroit.SetTag ("D31.value"), dmpast(31) 

            Adroit.SetTag ("D32.value"), dmpast(32) 

            Adroit.SetTag ("D33.value"), dmpast(33) 

            Adroit.SetTag ("D34.value"), dmpast(34) 

            Adroit.SetTag ("D35.value"), dmpast(35) 

            Adroit.SetTag ("D36.value"), dmpast(36) 

            Adroit.SetTag ("D37.value"), dmpast(37) 

            Adroit.SetTag ("D38.value"), dmpast(38) 

            Adroit.SetTag ("D39.value"), dmpast(39) 

            Adroit.SetTag ("D40.value"), dmpast(40) 

 

 

 

            'check if the controller is on auto or not 

 

            If auto = 1 Then 

                 ' AUTO : compute new output 

                 ' run Dmc algorithm 

 

 

                 i = 0 

                 Do While i < ndmc 

                    i = i + 1 

                    lam(i, i) = 1 

                    W(i, i) = beta * lam(i, i) 

                 Loop 

                  

                 ' make a local unti step response 

                 A_dmc = Exp(Ac * dt_dmcd) 

                 B_dmc = (A_dmc - 1) * (1 / Ac) * Bc 

                 AA_dmc = A_dmc - kk_kal * dt_dmcd 

 

                 i = 0 

                 Do While i < ndmc 

                    i = i + 1 

                     

                    If i = 1 Then 

                         b_last = 0 

                    Else 

                         b_last = b(i - 1) 

                    End If 

 

                    b(i) = AA_dmc * b_last + B_dmc * 1 

                 Loop 

 

                 'load the dynamic matrix BB 

                 i = 0 

                      

                 Do While i < ndmc 

                    i = i + 1 
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                    j = 0 

                     

                    Do While j < i 

                        j = j + 1 

                        jj = i - j + 1 

                        BB(i, j) = b(jj) 

                    Loop 

                     

                 Loop 

 

                 'load the matrices Bol and B0 

                 i = 0 

                 Do While i < ndmc 

                    i = i + 1 

 

                    j = 0 

                    Do While j < ndmc 

                    j = j + 1 

                         If ndmc < (ndmc + i - j + 1) Then 

                                jj = ndmc 

                         Else 

                                jj = ndmc + i - j + 1 

                         End If 

                         Bol(i, j) = BB(ndmc, ndmc + 1 - jj) 

                         B0(i, j) = BB(ndmc, j) 

                     Loop 

                 Loop 

 

                 'open loop error trajectory 

                 i = 0 

 

                 Do While i < ndmc 

                 i = i + 1 

                  

                 ' (Bol-B0)*dmpast line by line 

                     hj = 0 

                     j = 0 

                     Do While j < ndmc 

                        j = j + 1 

                        hj = (Bol(i, j) - B0(i, j)) * dmpast(j) + hj 

                     Loop 

                     eol(i, 1) = hj + (xr_data - xr_sp)  ' control model value - reset to plant value below for online 

                 Loop 

 

                  

 

                 ' make A 

                 i = 0 

                 Do While i < ndmc 

                    i = i + 1 
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                    j = 0 

                 

                    Do While j < nopt_dmc 

                        j = j + 1 

                        Admc(i, j) = BB(i, j) 

                    Loop 

                 Loop 

 

                 'only do least squares part, not constrained search 

                 ' calcul of inv(A'*W*A+lam) *A'*W*eol 

                  

                 'calcul de W*A 

                 mult W, Admc, ndmc, nopt_dmc, ndmc, WA 

 

                 'calcul de A'*W*A 

                 trans_mult Admc, WA, nopt_dmc, nopt_dmc, ndmc, AWA 

 

                 'calcul de L=Admc'*w*Admc+lam 

                  

                 i = 0 

                 Do While i < nopt_dmc 

                    i = i + 1 

                    j = 0 

                    Do While j < nopt_dmc 

                        j = j + 1 

                        L(i, j) = AWA(i, j) + lam(i, j) 

                    Loop 

                 Loop 

                 

 

                 'calcul of inverse of L 

                  

                 Invert L, nopt_dmc, L_inv 

 

                 'calcul z=L*A'*W*eol 

                 'calcul W*eol 

                 mult W, eol, ndmc, 1, ndmc, Weol 

                  

                 'Calcul A'*Weol 

 

                 trans_mult Admc, Weol, nopt_dmc, 1, ndmc, AWeol 

 

                 'Calcul z 

                 mult L_inv, AWeol, nopt_dmc, 1, nopt_dmc, z 

 

                 dx0_pred = -z(1, 1) 

 

                 ' #### MM021210 : Convert directly to a pump setting using observed ratio 

                 pump_setting = pump_data + dx0_pred * (F0_data + FLOWPROTECT) / GRADPUMP 

                 If pump_setting < pump_set_min Then 
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                     pump_setting = pump_set_min 

                 End If 

                 If pump_setting > pump_set_max Then 

                     pump_setting = pump_set_max 

                 End If 

            

                 Adroit.SetTag ("FI29007_AO.value"), pump_setting 

            

           End If 

 

Loop 

         

Adroit.SetTag "T-DMC.value", t_dmc 

 

 

End Sub 

 

Sub mult(f, h, bnr, cnc, cnr, g) 

'calcul of cofactor for a matrix 

  

i = 0 

Do While i < bnr 

    i = i + 1 

    j = 0 

    Do While j < cnc 

        j = j + 1 

        Sum = 0 

        k = 0 

        Do While k < cnr 

            k = k + 1 

            Sum = Sum + f(i, k) * h(k, j) 

        Loop 

        g(i, j) = Sum 

    Loop 

Loop 

 

        

         

End Sub 

 

Sub trans_mult(h, c, bnc, cnc, cnr, g) 

'calcul of a=b_transpose*c 

 

i = 0 

Do While i < bnc 

    i = i + 1 

    j = 0 

    Do While j < cnc 

        j = j + 1 

        Sum = 0 



 APPENDIX E

 

E-12 

        k = 0 

        Do While k < cnr 

            k = k + 1 

            Sum = Sum + h(k, i) * c(k, j) 

        Loop 

        g(i, j) = Sum 

    Loop 

Loop 

     

End Sub 

 

Sub Invert(a, N, y) 

 

 

Dim d 

Dim indx(2) 

Dim col(2) 

 

d = 1 

 

 

Lu_decomp a, N, indx, d  'decompose the matrix just once 

         

        j = 0 

        Do While j < N 

            j = j + 1 

            i = 0 

            Do While i < N 

                i = i + 1 

                col(i) = 0 

            Loop 

            col(j) = 1 

            Lu_sol a, N, indx, col 

            i = 0 

            Do While i < N 

                i = i + 1 

                y(i, j) = col(i) 

            Loop 

        Loop 

         

End Sub 

   

Sub Lu_decomp(a, N, indx, d) 

 

'Initialisation 

     

    'no row interchange yet 

    d = 1 

    tiny = 0.00000001 

    sumi = 0 
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    imax = 1 

 

    'vv stores the implicit scaling of each row 

    Dim vv(2) 

' Loop over the row to get the implicit scaling information 

i = 0 

 Do While i < N 

    i = i + 1 

    j = 0 

     

    Do While j < N 

        j = j + 1 

        If Abs(a(i, j)) > big Then 

            big = Abs(a(i, j)) 

        End If 

    'No nonzero largest element 

        If big = 0 Then 

        End If 

    'Save the scaling 

    vv(i) = 1 / big 

    Loop 

Loop 

 

'Loop over columns of Crout's method 

 

j = 0 

Do While j < N 

    j = j + 1 

 

    If j > 1 Then 

         

        i = 0 

        Do While i < (j - 1) 

            i = i + 1 

            sumi = a(i, j) 

                If i > 1 Then 

                    k = 0 

                    Do While k < (i - 1) 

                        k = k + 1 

                        sumi = sumi - a(i, k) * a(k, j) 

                        a(i, j) = sumi 

                    Loop 

                End If 

        Loop 

    End If 

    'Initialize for the search of the largest pivot element 

    big = 0 

    i = j - 1 

    Do While i < N 

        i = i + 1 
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        sumi = a(i, j) 

        If j > 1 Then 

            k = 0 

            Do While k < (j - 1) 

                k = k + 1 

                sumi = sumi - a(i, k) * a(k, j) 

                a(i, j) = sumi 

                dum = vv(i) * Abs(sumi) 

                 

                'is the figure of merit for the pivot better than the best so far ? 

                If dum >= big Then 

                        big = dum 

                        imax = i 

                End If 

            Loop 

        End If 

         

    Loop 

     

    'Do we need to interchange rows ? 

    If j <> imax Then 

        k = 0 

        Do While k < N 

            k = k + 1 

            dum = a(imax, k) 

            a(imax, k) = a(j, k) 

            a(j, k) = dum 

        Loop 

        ' ...and change the  parity of d 

        d = -d 

        vv(imax) = vv(j) 

    End If 

     

    indx(j) = imax 

     

    If a(j, j) = 0 Then 

        a(j, j) = tiny ' if the pivot element is zero the matrix is singular 

    End If 

     

    If j <> N Then 

        dum = 1 / a(j, j) 

         

        i = j 

        Do While i < N 

            i = i + 1 

            a(i, j) = a(i, j) * dum 

        Loop 

    End If   'go back for the next column in the reduction 

     

    i = 0 
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    Do While i < N 

        i = i + 1 

        vv(i) = 0 

    Loop 

Loop 

 

 

End Sub 

 

Sub Lu_sol(a, N, indx, col) 

 

    ii = 0 

    i = 0 

    Do While i < N 

        i = i + 1 

        ip = indx(i) 

        sumi = col(ip) 

        col(ip) = col(i) 

         

        If ii <> 0 Then 

            j = ii - 1 

            Do While j < (i - 1) 

                j = j + 1 

                sumi = sumi - a(i, j) * col(j) 

            Loop 

             

        Else 

            If sumi <> 0 Then 

                ii = i 

            End If 

        End If 

            col(i) = sumi 

        

     Loop 

      

     i = N + 1 

     Do While i > 1 

        i = i - 1 

      

        sumi = col(i) 

            j = i 

            Do While j < N 

                j = j + 1 

                sumi = sumi - a(i, j) * col(j) 

            Loop 

                col(i) = sumi * 1 / a(i, i) 

    Loop 

     

End Sub 
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APPENDIX F 

ADAPTIVE PREDICTIVE CONTROL OF THE 

CHLORINE CONCENTRATION AT THE OUTLET OF 

THE CHLORINE CONTACT RESERVOIR 

USER MANUAL 

5.1 AIM OF THE ALGORITHM 

This algorithm is to control the outlet chlorine concentration of the reservoir by manipulating 

the inlet chlorine concentration of the reservoir. The algorithm has two main parts. First, an 

extended Kalman filter estimates the kinetic factor of the chlorine concentration decay, then a 

Dynamic Matrix Controller manipulates the inlet chlorine concentration to achieve the outlet 

chlorine set-point. 

5.2 VALUES SET BY THE OPERATORS 

If the algorithm is used online, the online factor has to be set to 1.To trigger the Dynamic 

Matrix Controller the auto factor has to be set to 1 as well. 

 

To force the filter to follow the observation, the Kalman gain factor (alpha) can be increased 

until 100, above this value, the filter can become unstable. The recommended setting is 10 so 

that it responds only to variation longer than 4 hours. 

 

A Dynamic Matrix Controller gain (beta) has to be set as well. The higher it is, the better will be 

the performance of the controller, but if it is too high, the Dynamic Matrix controller becomes 

unstable. The recommended setting is 10. 

 

To smooth the inlet chlorine concentration, the inlet flow rate and the pump flow rate, a filter 

has been created. Its smoothing factor is delta. The recommended setting is 0.0005. 

 

Each time the program needs to be re-initialised, or each time the program is activated, the 

initialisation factor is set to 1. It will come back automatically to the value 0 after a first 

iteration. 
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The operator set a value (between 0.8 and 1.2 mg/L), which has to be reach by the outlet 

chlorine concentration of the reservoir (Set-point). 

 

5.3 TIME LOOP 

The time of the day is set on the User Interface screen (Time). As the program needs to know 

the time of its last call (time last call), the internal time of the extended Kalman filter (t-kal), the 

internal time of the Dynamic Matrix Controller (t-dmc). Each time t-kal or t-dmc are positive, 

the extended Kalman filter or the Dynamic Matrix Controller are running. 

 

The algorithm must be called each 5 seconds, which means that the time between two calls is 

set in seconds in the Script Agent Configurator as 5 seconds. This elapsed time appears on the 

User Interface screen, named t_now-t_last. Thus, it is easy to verify that the program is called 

effectively each 5 seconds. 

 

5.4 PROGRAM: VALUES STORAGE 

5.4.1 Extended Kalman filter parameters 

 This updates at each iteration the kinetic factor (kinetic factor) and the covariance matrix 

(M value) and it needs them for the next call. 

5.4.2 Dynamic Matrix Controller parameters 

To run, the DMC needs the data from the previous call for the inlet and outlet chlorine 

concentration (x0_data_last and xr_data_last),  for the calculated inlet chlorine concentration 

(x0 mod last dmc) and the matrix of the past inputs (dm_past). Finally, the inlet and outlet 

chlorine concentration calculated by the program (Cl2_inlet_calculated and 

Cl2_outlet_calculated) are set on User Interface screen. 

 

5.4.3 Pump parameters 

This update at each iteration the pump flow rate setting. 
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5.5 FLOW DIAGRAM OF THE PROGRAM 

Get plant data from tags

Init
=
1

Yes Variables
initialisation

Init = 0

No

Extended Kalman filter algorithm

Auto
=
1

No Accept manual tag for 
new inlet chlorine

concentration

Yes

Dynamic Matrix Controller algorithm
Compute new inlet chlorine concentration

Online
=
1

No
Plant simulation to 
calculate the outlet 

chlorine 
concentration 
using model

Yes

Smooth measured outlet chlorine 
concentration for next cycle

Auto
=
1

Yes

pump flow rate setting is set as 
input to the plant

No

Triggered on a fixed 
cycle (t_now-t_last) 

from ADROIT
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5.6 POSSIBLE PROBLEM 

5.6.1 Time alarm 

If the word: “ Time alarm” appears on the User Interface screen, that means that there is a 

problem in the setting of the time for the extended Kalman filter and for the Dynamic Matrix 

Controller. The time of the extended Kalman filter for the extended Kalman filter has to be 

greater than 1 and inferior to the time of the Dynamic Matrix Controller. 

After solving this problem, the program has to be re-initialised by setting the initialisation 

factor equal to 1 again (noting that it will reset itself to 0 on the next cycle. 

5.6.2 The program does not run or gives completely false results. 

• Re-initialise by setting the initialisation factor equal to 1. 

• The program is built to run with values non-equal to 0 for the level and the inflow of the 

reservoir. If these values are too close from 0, the program cannot run.  

• If just one reservoir is used, the active volume area has to be divided by 2. 
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