

School of Agricultural, Earth & Environmental Sciences

Analysing the cost-effectiveness of using 'LaDePa' agricultural pellets and struvite as new fertilizers: Experimental evidence for maize, wheat and sugarcane in KZN, S.A.

B. Chapeyama, E. Wale & A. Odindo

INSPIRING GREATNESS

NELSON R MANDELA SCHOOL OF MEDICINE

PIETERMARITZBURG CAMPUS

WESTVILLE CAMPUS

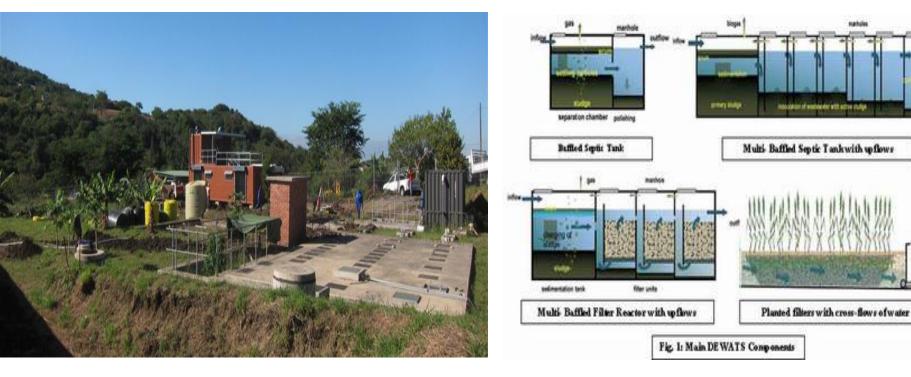
EDGEWOOD CAMPUS

HOWARD COLLEGE CAMPUS

Presentation outline

- Introduction
- Problem statement
- Research objectives
- Empirical methods
- Results and discussion
- Conclusions and recommendations
- Directions of future research

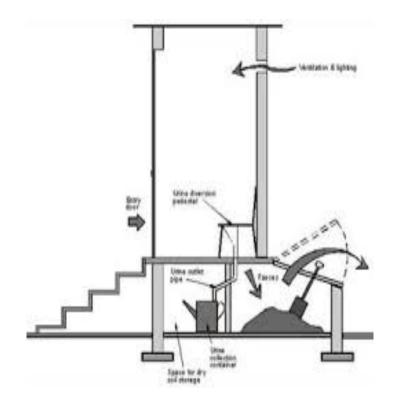
Introduction


- Sanitation provision challenge in urban municipalities
 - increasing urban population
- Waterborne sewer systems
 Centralized
- High costs of proper sanitation provision
- Special chemicals and power required
 nitrogen and phosphorus present in the effluent

Problem statement

- Sanitation provision
 High expenses
- Waste disposal
 - sustainable waste disposal
 - using waste as inputs in agriculture

Alternatives

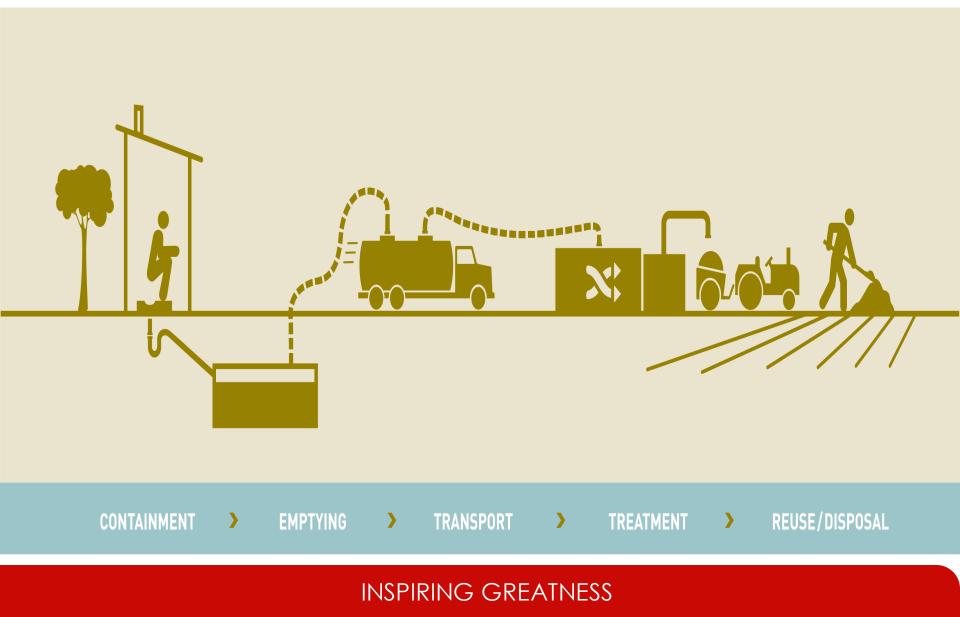

Decentralized sanitation systems
 – DEWATS

Alternatives cont....

Dry (waterless) systems

VIP toilets (sludge)

UDDT (urine)



Dry systems

- Waste disposal remains a problem
- Opportunity
 - converting the waste into usable waste products
 - agricultural inputs (fertilisers)
 - fertiliser use in South Africa and SSA
 - global phosphorus crisis

- sustainable environmental management

Converting waste into wealth

Current Initiatives

- LaDePa from VIP latrines faecal sludge
- Struvite from urine collected from UDDTs
 - Both contain the basic N,P,K

LaDePa (organic)

Struvite (inorganic)

LaDePa and Struvite

- Undergo full treatment
- LaDePa

- nitrogen source (3%N); soil amendment

- Struvite
 - phosphorus source (12% P)
- Can replace commercial fertilisers – readily available low cost fertilisers
 - potential yields increase
 - increasing food security
 - reduced fertiliser imports

Objectives

- Assessing the financial viability of using LaDePa and struvite for crop production
- Specific objectives
 - determining the quantities of LaDePa, Struvite and other selected commercial fertilisers to be applied on a per hectare basis
 - meeting the nutrient requirements of maize, wheat and sugarcane,
 - analysing the cost-effectiveness of replacing the least cost commercial organic and inorganic plant nutrient sources with LaDePa and Struvite.

Fertiliser value

- Can be quantified
 - yield produced
 - costs saved from replacing commercial fertilisers with them
- Economic value of the fertilisers was assessed
 - quantitative, empirical study

Empirical methods

- Costs of using each of the fertilizers per hectare
 - LaDePa, Struvite and other commercial fertilisers
 - maize, wheat and sugarcane
 - producing a fixed yield under the same conditions
- Least cost commercial organic and inorganic
 - vs. LaDePa and struvite

Economic feasibility

- Financial Cost-Benefit analysis
 - partial budgets
 - the relative change in farm profitability as a result of a change in the input use

Reduced costs for not using		Additional costs of using			
The lowest cost Organic or Inorganic Fertiliser	Cost (R/ha)	The plant nutrient sources LaDePa or Struvite	Cost (R/ha)	Income Change (R/ha)	Comment
x	b	У	d	b - d	Acceptable/Unacceptable

Source: Adapted from SBSA (2005)

Empirical results for maize

	Plant Nutrient Source	Cost per unit area (R/ha)
1	MAP (inorganic)	4 921.96
2	N:P:K_3:2:1 (25) (inorganic)	5 281.47
3	N:P:K_2:3:2 (22) (inorganic)	5 783.59
4	Pure Fertilisers (inorganic)	5 977.14
<u>5</u>	<u>LaDePa (organic)</u>	<u>5 998.31</u>
<u>6</u>	<u>Struvite (inorganic)</u>	<u>6 042.06</u>
7	Gromor Accelerator (organic)	13 542.86

Source: Author's compilation

Empirical results for sugarcane

	Plant Nutrient Source	Cost per unit area (R/ha)
1	MAP (inorganic)	<u>5 707.55</u>
2	N:P:K_3:2:1 (25) (inorganic)	5 887.28
3	N:P:K_2:3:2 (22) (inorganic)	6 018.46
4	Pure Fertilisers (inorganic)	6 235.12
<u>5</u>	<u>Struvite (inorganic)</u>	<u>6 237.13</u>
<u>6</u>	<u>LaDePa (organic)</u>	<u>6 242.82</u>
7	Gromor Accelerator (organic)	11 278.94

Source: Author's compilation

Empirical results for wheat

	Plant Nutrient Source	Cost per unit area (R/ha)
1	MAP (inorganic)	5 314.05
2	N:P:K_3:2:1 (25) (inorganic)	5 649.78
3	N:P:K_2:3:2 (22) (inorganic)	5 894.63
<u>4</u>	<u>LaDePa (organic)</u>	<u>6 115.18</u>
5	Pure Fertilisers (inorganic)	6 298.90
<u>6</u>	<u>Struvite</u> (inorganic)	<u>6 302.41</u>
7	Gromor Accelerator (organic)	15 713.99

Source: Author's compilation

The maize enterprise

Reduced costs for not using:		Additional costs of using:		Income change	
Nutrient source	Cost (R/ha)	Nutrient source	Cost (R/ha)	(R/ha)	Comment
Gromor		LaDePa			Acceptole
	13 542.86		5 998.31	7 544.55	Acceptable
Gromor		Struvite		7 500 90	
	13 542.86		6 042.06	7 500.80	Acceptable
МАР		LaDePa			
	4 921.96		5 998.31	(-) 1 076.35	Unacceptable
МАР		Struvite		() 1 100 10	
	4 921.96		6 042.06	(-) 1 120.10	Unacceptable

Source: Authors' compilation

The sugarcane enterprise

Reduced costs for not using:		Additional costs of using:		Income change	
Nutrient source	Cost (R/ha)	Nutrient source	Cost (R/ha)	(R/ha)	Comment
Gromor		LaDePa		5 02 (10	Acceptole
	11 278.94		6 242.82	5 036.12	Acceptable
Gromor		Struvite		E 0 41 91	Acceptolo
	11 278.94		6 237.13	5 041.81	Acceptable
МАР		LaDePa			
	5 705.55		6 242.82	(-) 535.27	Unacceptable
МАР		Struvite			Ungooontabla
	5 705.55		6 237.13	(-) 529.58	Unacceptable

Source: Authors' compilation

The wheat enterprise

Reduced costs for not using:		Additional costs of using:		Income change	
Nutrient source	Cost (R/ha)	Nutrient source	Cost (R/ha)	(R/ha)	Comment
Gromor		LaDePa		0 500 01	Acceptoble
	15713.99		6 115.18	9 598.81	Acceptable
Gromor		Struvite		0 411 50	Acceptable
	15713.99		6 302.41	9 411.58	
МАР		LaDePa			
	5 314.35		6 115.18	(-) 801.13	Unacceptable
МАР		Struvite		() 000 27	
	5 314.05		6 302.41	(-) 988.36	Unacceptable

Source: Authors' compilation

Fertiliser combinations for maize costs

	Nutrient combination	Cost per hectare (R)
1	LAN + SSP	5 777.14
2	LaDePa + SSP	5 874.80
2	LaDePa + Struvite	5 874.80
4	LAN + <mark>Struvite</mark>	5 981.32
5	Gromor + SSP	13 542.86
6	Gromor + <mark>Struvite</mark>	13 543.81

Source: Authors' compilation

Discussion

- Both LaDePa and struvite were cost competitive in terms of cost per hectare
- Gromor, the commercial organic fertilizer was the most expensive to use
- High costs in the use of struvite are mainly attributed to its high presumed market price
 - though high P concentration
 - can replace Gromor but not MAP in all enterprises
- High costs in the use of LaDePa are mainly attributed to its low nutrient concentration
 - low price but low nutrients concentration
 - can also replace Gromor but not MAP in all enterprises

Discussion cont....

- LAN + SSP lowest costs
 - High concentration of chemical fertilisers
- LaDePa + Struvite = LaDePa + SSP
 - Struvite a very good phosphorus source
 - Can compete with commercial fertilisers
- All combinations containing Gromor were the most expensive
 - Low nutrient concentration causes higher prices
- LaDePa + Struvite a very competitive combination
 +R97.66 difference from chemical fertilisers combination

Study Limitations

- Limitation
 - evaluation was done on experimental data,
 - the results of this study could well differ from the actual field trials

- Production costs for using LaDePa and struvite may decline with increasing farm size
 - economies of scale and size

Conclusions

- LaDePa and Struvite were economically viable
 - Struvite can solve the phosphorus challenge
 - LaDePa can also be used as a soil amendment
- Dry sanitation cheap solution

Recommendations

- Product market success
 - the organic fertilizer and marketing policy framework
 - infrastructural development
 - market information on demand
 - cost competitiveness
 - product branding
- Good opportunity for scaling
 - replicating the number of treatment reactors
 - social acceptance
- Business opportunity
 - job creation
- Reduced public service and environmental costs

Directions for future research

- Valuing the environmental benefits of using LaDePa and struvite
- Also value the environmental costs from chemical use in agriculture
- Development of concentrated products
- Creation of other products
 - incinerated ash, bio oil from faecal sludge
 - NCU (21%N)
 - recycled/reclaimed water
 - power generation (urinetricity)
- Sensitivity analysis on cost and benefit outcomes

Acknowledgements

• UKZN PRG

• EWS

• UKZN

Thank you

