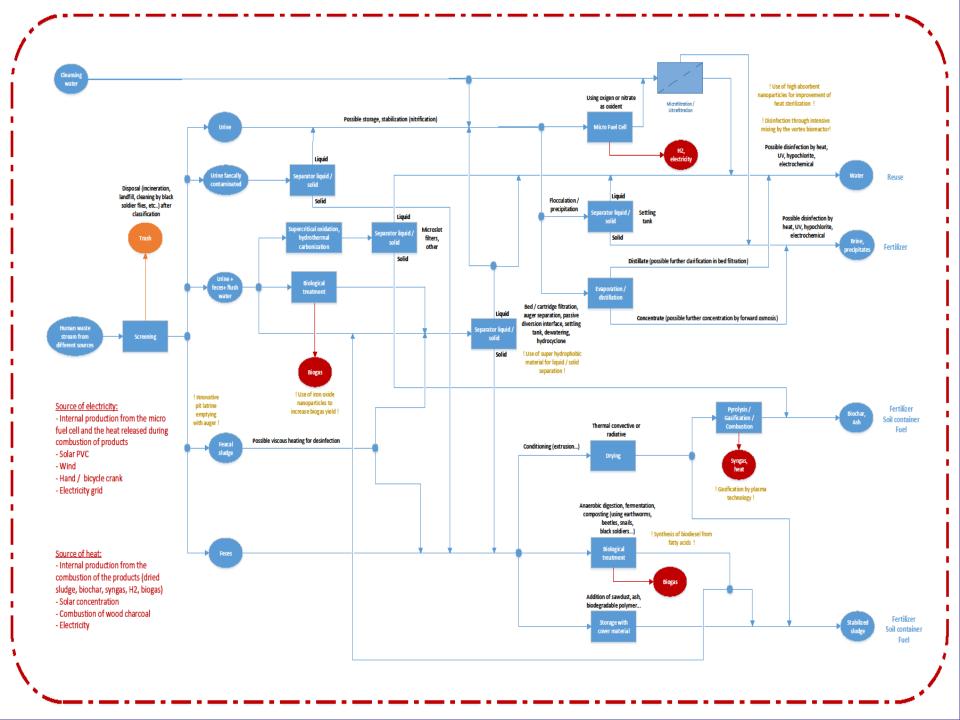
Facts, Figures and Fallacies about Faeces, Farts & Faecal Sludge


Without data it is just an opinion...

Prof Chris Buckley University of KwaZulu-Natal Durban South Africa

buckley@ukzn.ac.za

Excreta facts and figures

	Units	Urine	Faeces	Toilet paper	Black water (urine + faeces)
wet mass	kg/person.y	550	51	8.9	610
dry mass	kg/person.y	21	11	8.5	40
nitrogen	kg/person.y	4	0.55		4.5
phosphorus	kg/person.y	0.36	0.18		0.55

Vinnerås et al. 2006

most pathogens are in the faeces most nutrients are in the urine

Excreta plus flush water

	Units	Black water (urine + faeces)	Black water + Flush water		
wet mass	kg/person.y	610 —	→ 18,000		
dry mass	kg/person.y	40	40		
nitrogen	kg/person.y	4.5	4.5		
phosphorus	kg/person.y	0.5	0.5		

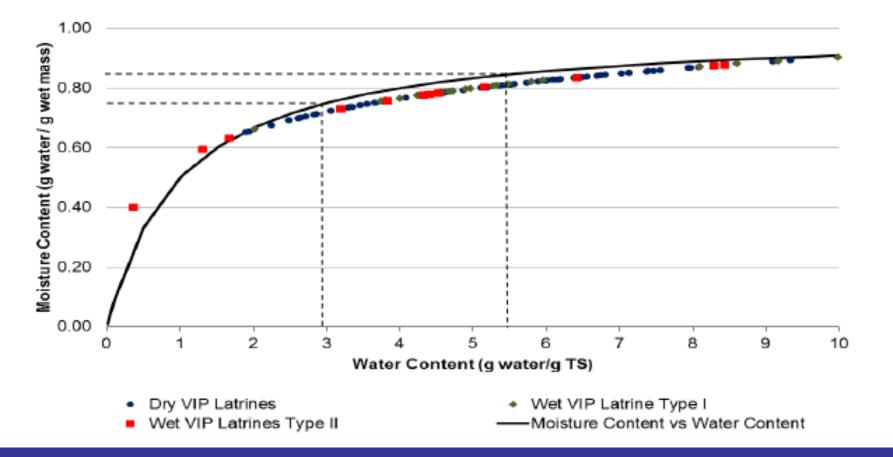
all pathogens are in the water!

What is the value of faeces?

Even economists are interested in faecal sludge!!

...added over \$180m to India's GDP, assuming an "evacuation rate" of 0.3kg a day for goats and rather more for sheep ...

Econometrics

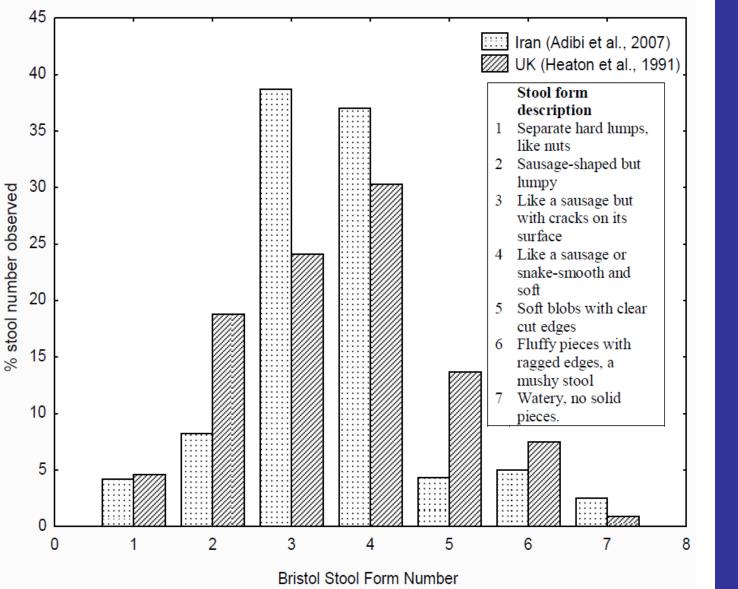

Economist
It is not easy to compare the size of economies—even across the Channel

Jul 16th 2016 | From the print edition
Image: Constant of the constant of the

Bristol Stool Chart

Type.1	Separate hard lumps, like nuts (hard to pass)
Туре.2	Sausage-shaped but lumpy
Туре.3	Like a sausage with cracks on its surface
Туре.4	Like a sausage, smooth and soft
Type.5	Soft blobs, clear cut edges (passed easily)
Type.6	Fluffy pieces, ragged edges, mushy stool
Туре.7	Watery, no solid pieces. Entirely liquid

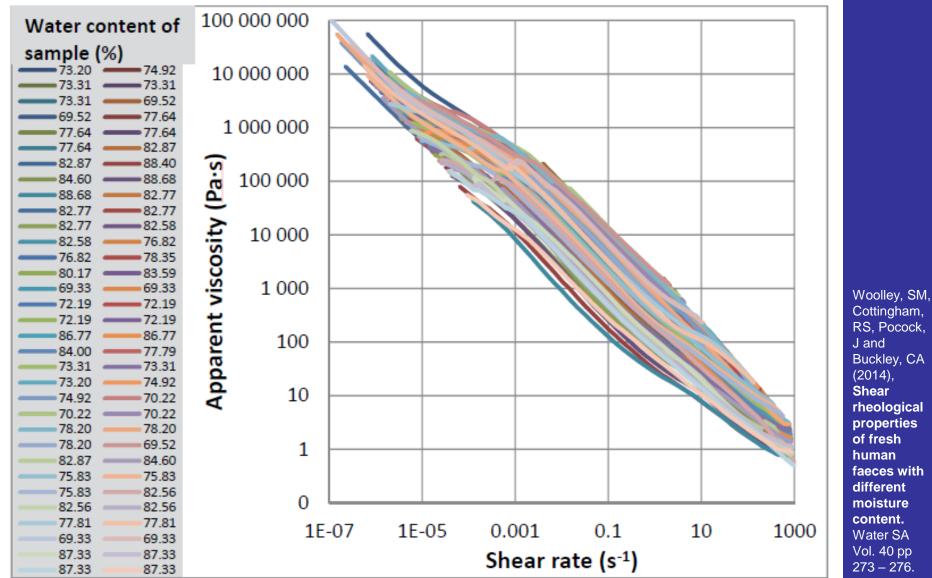
Moisture content and solid content


Excreta Characteristics

Key design criteria	Median value
Faeces	
Faecal wet weight (g/cap/day)	128
Faecal dry weight (g/cap/day)	29
Stool Frequency (motions/24 hours)	1.1
Total Solids (%)	25
VS (% of TS)	89
COD (g/cap/day)	71
Nitrogen (g/cap/day)	1.8
Protein (g/cap/day)	6.3
Lipids (g/cap/day)	4.1
Carbohydrate (g/cap/day)	9
Fibre (g/cap/day)	6
Calorific value (kcal/cap/day)	132
pH	6.6
Urine	
Urine wet weight (L/cap/day)	1.4
Urine dry weight (g/cap/day)	59
Urination frequency (urinations/24	6
hours)	
Nitrogen (g/cap/day)	11
Calorific value (kcal/cap/day)	1701
pH	6.2

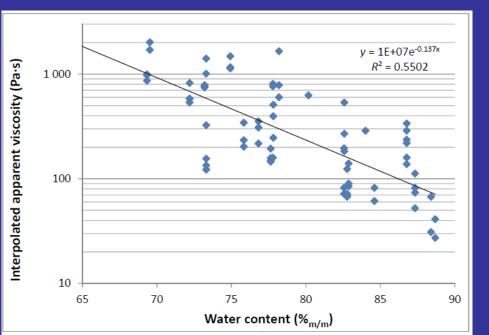
C. Rose, A. Parker, B. Jefferson & E. Cartmell (2015): The characterisation of faeces and urine; a review of the literature to inform advanced treatment technology, Critical Reviews in Environmental Science and Technology,

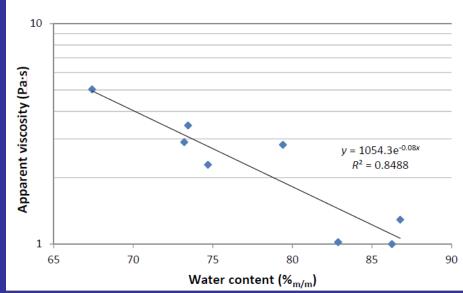
DOI: 10.1080/10643389.2014.1000761 http://dx.doi.org/10.1080/10643389.2014.1000 761


Stool Consistency Distribution

C. Rose, A. Parker, B. Jefferson & E. Cartmell (2015): The characterisation of faeces and urine; a review of the literature to inform advanced treatment technology, Critical Reviews in Environmental Science and Technology,

DOI: 10.1080/10643389.20 14.1000761 http://dx.doi.org/10.10 80/10643389.2014.10 00761


Viscosity fresh faeces



Cottingham, RS, Pocock, J and Buckley, CA (2014). Shear rheological properties of fresh human faeces with different moisture content. Water SA Vol. 40 pp 273 - 276.

Changes in viscosity of fresh faeces

Variation in apparent viscosity of fresh human faeces of sample on a dry basis (applied shear rate of 1 s.1 at 25°C)

Apparent viscosity of fresh human faeces after 1 h of shearing at 100 s1 for various moisture contents (at 25°C)

Woolley, SM, Cottingham, RS, Pocock, J and Buckley, CA (2014), Shear rheological properties of fresh human faeces with different moisture content. Water SA Vol. 40 pp 273 – 276.

Malodour – fresh faeces and urine

	Compound	Concentration	Percentage
		(ppm)	$(\%)^{a)}$
Fatty acids	Acetic acid	40.00-120.00	65.00
	Propionic acid	5.30-27.00	15.00
	Butyric acid	1.50-9.20	6.50
	<i>i</i> -Valeric acid	0.53-2.60	2.30
	<i>n</i> -Valeric acid	0.41–1.60	1.40
S-containing	Hydrogen sulfide	19.00-50.00	1.60
compounds	Methyl mercaptane	0.70–1.10	0.62
N-containing	Pyridine	0.03-0.23	0.14
compounds	Pyrrole	0.01-0.02	0.01
	Indole	0.02-0.35	0.31
	Skatole	0.10-0.48	0.55
	Ammonia ^{b)}	18.00-34.00	6.50
	Trimethylamine ^{b)}	0.80-1.20	0.60

Sato, H, Hirose, T, Kimura, T, Moriyama, Y and Nakashimab, Y (2001). Analysis of Malodorous Volatile Substances of Human Waste: Feces and Urine. *Journal of Health Science*, **47**(5) pp483 - 490

Odour with diarrhea

Normal							\sim
							(ppb)
Sample	Acetic	Propionic	Butyric	iso-Valeric	<i>n</i> -Valeric	Pyridine	Pyrrole
No.	acid	acid	acid	acid	acid		
1	< 1	< 1	0.24	0.03	0.01	8	2
2	< 1	2	0.02	0.01	0.01	6	3
3	< 1	< 1	0.08	0.01	0.01	8	2
4	10	1	0.20	0.03	0.01	5	1
5	5	5	0.11	0.05	0.01	9	1
6	< 1	11	0.12	0.04	0.01	8	3
7	4	< 1	0.15	0.10	0.05	10	1
8	7	7	0.30	0.01	0.01	1	1
9	3	< 1	0.35	0.02	0.04	5	1
10	< 1	< 1	0.02	0.01	0.01	2	2
Ave	3	3	0.16	0.03	0.02	6	2
With diarrhea							
	-						(ppm)
Sample	Acetic	Propionic	Butyric	iso-Valeric	<i>n</i> -Valeric	Pyridine	Pyrrole
No.	acid	acid	acid	acid	acid		
11	497	2.8	2.0	0.03	0.77	0.10	0.01
12	600	3.5	3.0	0.30	0.90	0.20	0.03
Ave	549	3.1	2.5	0.32	0.84	0.15	0.02

Sato, H, Morimatsu, Kimura, T, Moriyama, Y Yamashita, T and Nakashima, Y (2002). Analysis of Malodorous Volatile Substances of Human Feces. *Journal of Health Science*, **48**(2) pp179 - 185

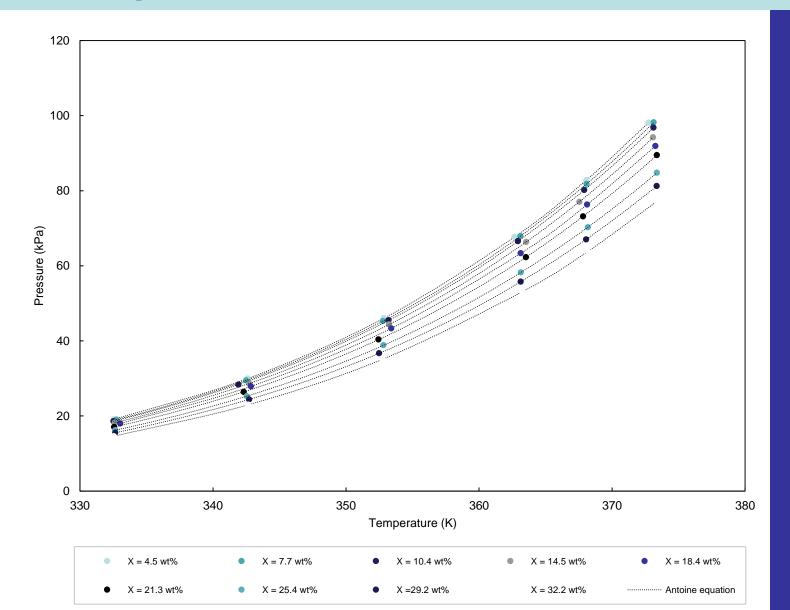
Synthetic fresh and hydrolysed urine up to 10X concentration

Vapour Pressure

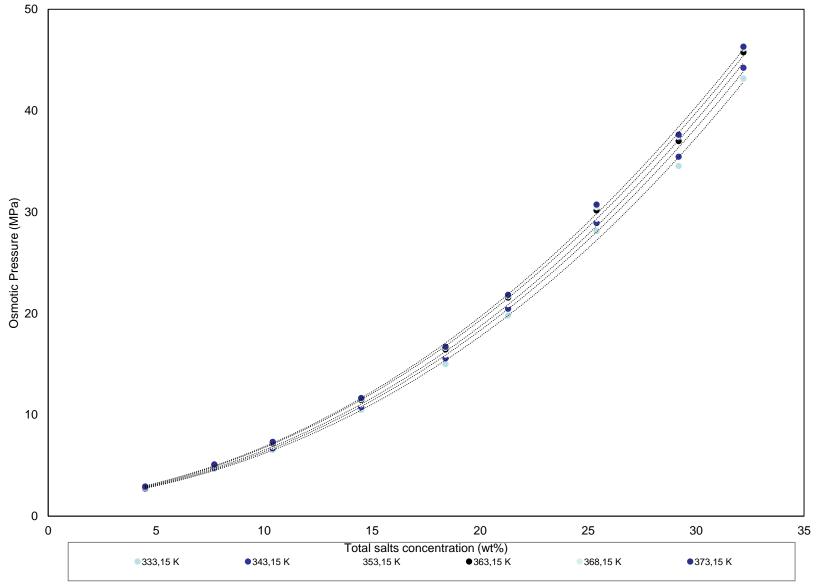
$$\log_{10} \mathbf{P} = \mathbf{A} - \frac{\mathbf{B}}{\mathbf{T}} + \frac{\mathbf{C}}{\mathbf{T}^2}$$

Osmotic Pressure

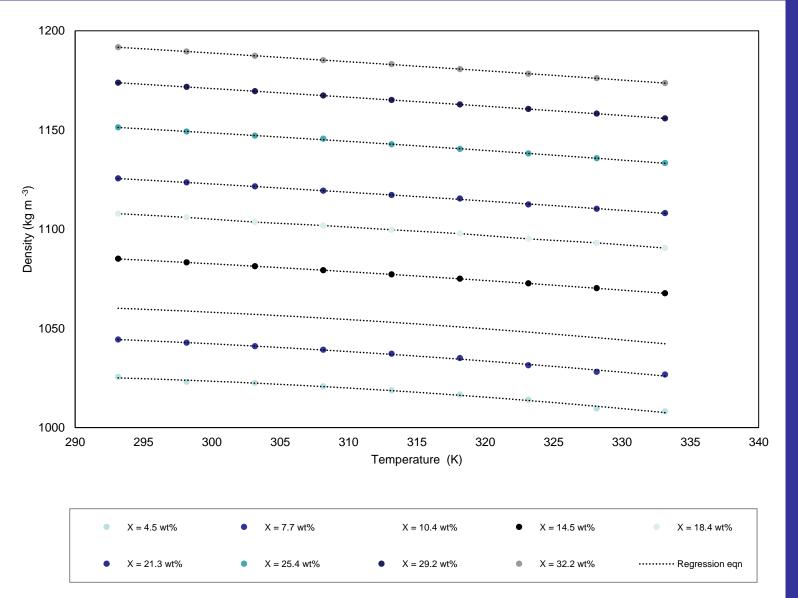
$$\pi = A + BX + CX^2$$

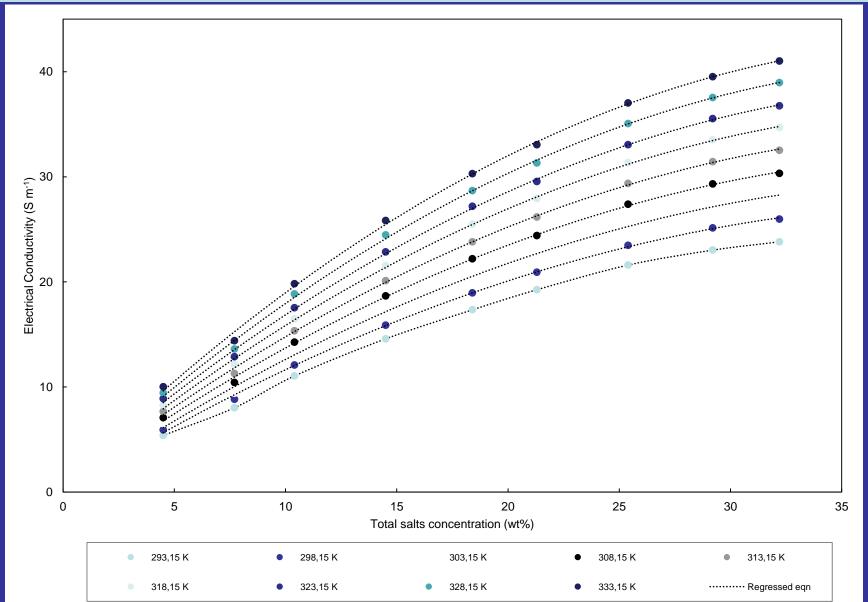

Synthetic fresh and hydrolysed urine up to 10X concentration

Density


$$\rho - \rho_{H_2O} = A - BT - CT^2$$

Electrical Conductivity $\kappa = (641.2 + 28.3T)X - (95.3 - 74.6T)X^2 - (1903 + 87.8T)X^3$


Variations in urine vapour pressure with temperature and concentration


Variations in urine osmotic pressure with temperature and concentration

Variations in urine density with temperature and concentration

Variations in urine electrical conductivity with temperature and concentration

Public toilet and septic tanks

Ratios (g/g)	Public toilets	Septic tanks	Medium strength municipal wastewater
VSS:TSS	0.65-0.68	0.50-0.73	0.60-0.80
COD:BOD ₅	5.0	1.43-3.0	2.0-2.5
COD:TKN	0.10	1.2-7.8	8-12
BOD ₅ :TKN	2.2	0.84-2.6	4-6
COD:TP	109	8.0-52	35-45
BOD ₅ :TP	17	5.6-17.3	15-20

Reported characteristics of faecal sludge from onsite sanitation facilities and wastewater sludge

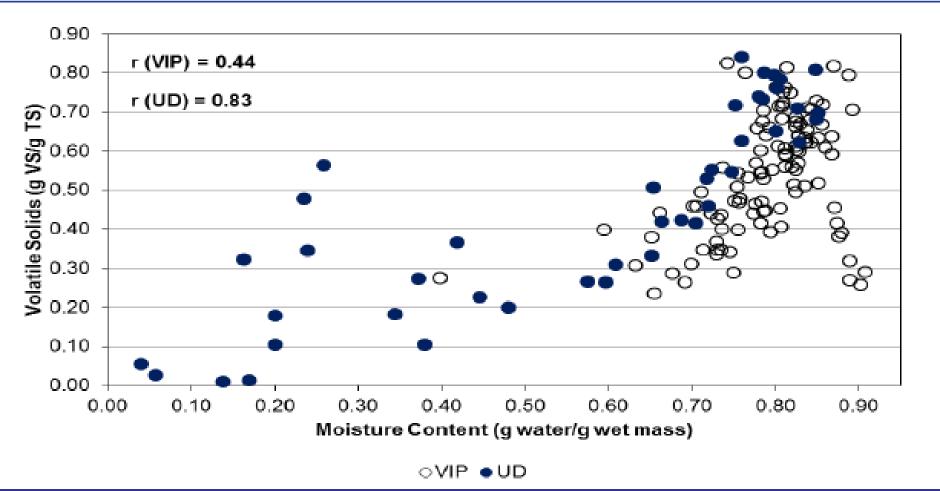
Parameter	FS so	ource	WWTP	Reference
	Public toilet	Septic tank	sludge	
рН	1.5-12.6			USEPA (1994)
	6.55-9.34			Kengne et al. (2011)
Total Solids, TS (mg/L)	52,500	12,000- 35,000	-	Koné and Strauss (2004)
	30,000	22,000	-	NWSC (2008)
		34,106		USEPA (1994)
	≥3.5%	<3%	<1%	Helnss et al. (1998)
Total Volatile Solids, TVS	68	50-73	-	Koné and Strauss (2004)
(as % of TS)	65	45	-	NWSC (2008)
COD (mg/L)	49,000	1,200- 7,800	-	Koné and Strauss (2004)
	30,000	10,000	7-608	NWSC (2008)
	20,000- 50,000	<10,000	500-2,500	Heinss et al. (1998)
BOD (mg/L)	7,600	840-2,600	-	Koné and Strauss (2004)
	-	-	20-229	NWSC (2008)
Total Nitrogen, TN (mg/L)	-	190-300	-	Koné and Strauss (2004)
			32-250	NWSC (2008)
Total Kjeldahl Nitrogen, TKN (mg/L)	3,400	1,000	-	Katukiza et al. (2012)
NH ₄ -N (mg/L)	3,300	150-1,200	-	Koné and Strauss (2004)
	2,000	400	2-168	NWSC (2008)
	2,000- 5,000	<1,000	30-70	Heinss et al. (1998)
Nitrates, NO ₃ - (mg N/L)	-	0.2-21	-	Koottatep et al. (2005)
Total Phosphorus, TP (mg P/L)	450	150	9-63	NWSC (2008)
Faecal collforms (cfu/100 mL)	1x 10 ⁵	1x10 ⁵	6.3x10 ⁴ - 6.6x10 ⁵	NWSC (2008)
Helminth eggs (Numbers/L)	2,500	4,000- 5,700		Heinss et al. (1994)
	20,000- 60,000	4,000	300-2,000	Heinss et al. (1998)
		600-6,000		Ingallinella et al. (2002)
		16,000		Yen-Phi et al. (2010)

Systems Approach for Implementation and Operation

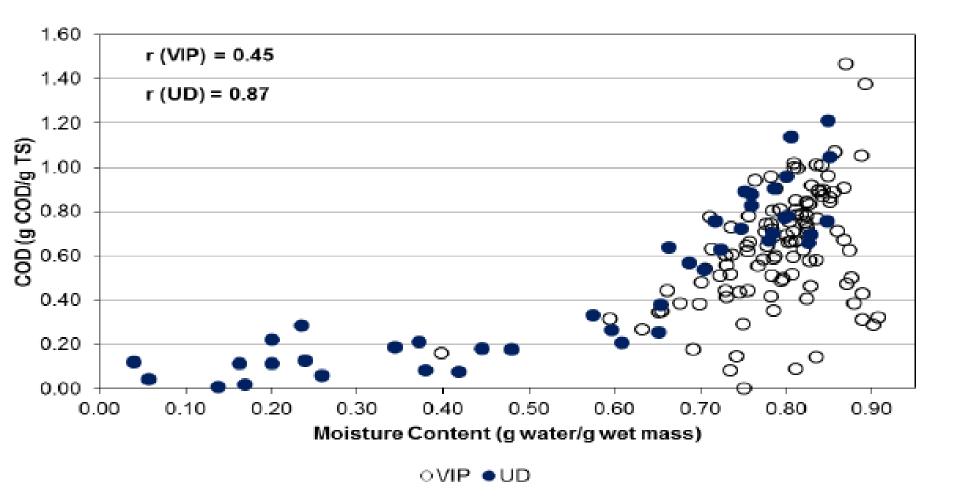
Trash

Screenings from the Niayes faecal sludge treatment plant in Dakar, Senegal (photo: Linda Strande). Faecal Sludge Management: A systems approach for implementation and operation

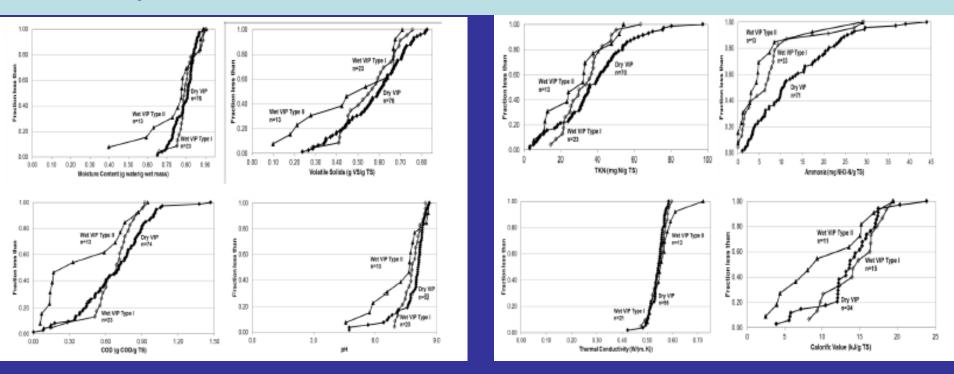
VIP analysis - Durban


Type	% Moisture	S mg/L	SSN g/g DW	g/g DW	S ml/mg	Hg .	GO mg/g DW	N- [™] HN mg/g DW	NYL mg/g DS	d-*Od mg/L	ے mg/L	🚽 关 Thermal conductivity	M/K M/Kalue	kg/m ³	
Dry VIP	83	381	0.57	0.43	0.11	7.6	680	13	40	0.73	3.86	0.54	14.06	1,356.5	F
Wet VIP	79	562	0.54	0.46	0.04	7.7	720	7	30	0.83	2.93	0.55	13.08	1,443.1	
CAB VIP	77	139	0.49	0.51	0.51	7.4	650	3	30			0.60	14.31	1,350.1	
UD	60	246	0.45	0.55	0.23	7.5	490	5	30	1.00	3.27	0.38	12.93	1,450.4	

Systems Approach for Implementation and Operation

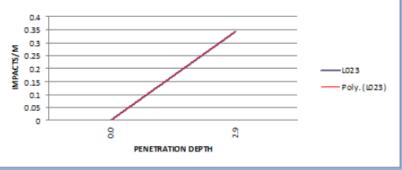

Linda Strande Mariska Ronteltap Damir Brdjanovic

aecal Sludge anagement

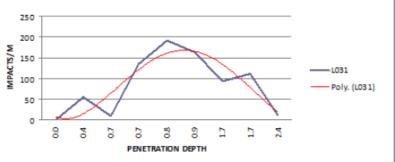

VIP and UD toilets – volatile solids and moisture content

VIP and UD toilets – COD and moisture content

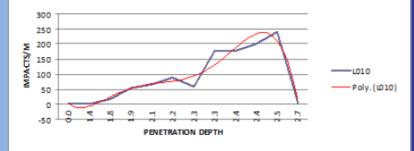
Dry and wet VIPs – moisture, volatile solids, COD, pH NH₄ TKN thermal conductivity and calorific value

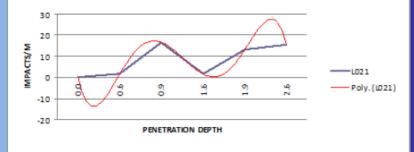


Penetrometer and VIPs (i)


IMPACT GRADIENT LATRINE 047

IMPACT GRADIENT LATRINE 016


IMPACT GRADIENT LATRINE 023

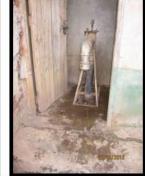

IMPACT GRADIENT LATRINE 031

IMPACT GRADIENT LATRINE 010

IMPACT GRADIENT LATRINE 021

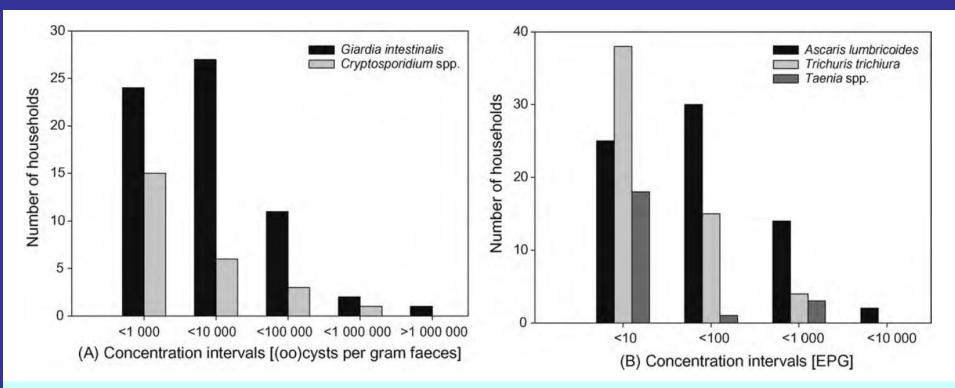
Penetrometer and VIPs (ii)

Samples taken from a single pit latrine By hand at 1 m Approx 1.4 m By Gulper at 2 m



Penetrometer and VIPs (iii)

<u>Theoretical De-sludging</u> Equipment Catagorization



	A	В	С	D	E	F	G	Н	Category	Number of Impacts/1 m
	~	D	0	U	-		0		A	<=0
Vacumn	\leftarrow			В	1-5					
									С	6-20
Vacutug	\leftarrow		\rightarrow						D	21-50
-									E	50-100
Gulper	\leftarrow		\rightarrow						F	100-200
									G	201-300
Hand	5	->						~	Н	>300

Helminths in VIP toilets in Durban

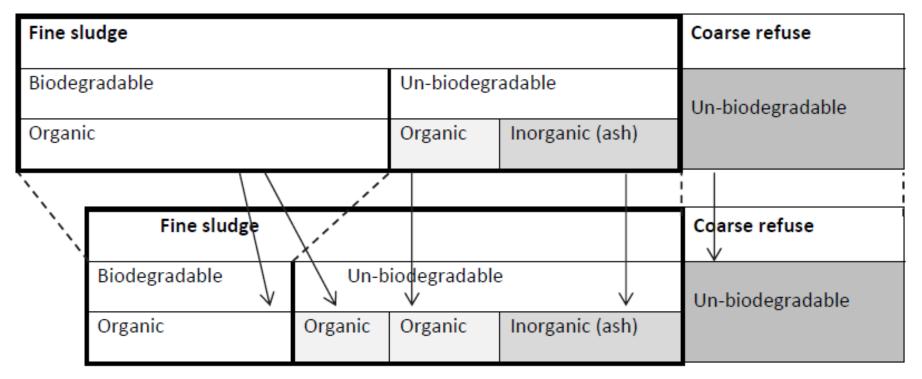
Distribution of the concentrations for samples positive for (A) G. intestinalis and Cryptosporidium spp. and (B) the helminths.

Transactions of the Royal Society of Tropical Medicine and Hygiene 104 (2010) 646–652

Helminths

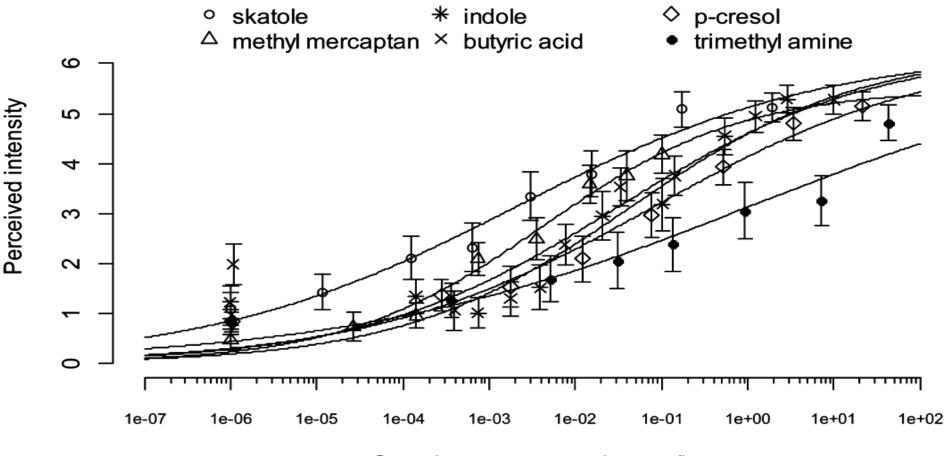
- indicator of pathogen content
- possibly requires spiking
- need to determine if eggs are viable
- interferences
- pit emptiers
 - viable ova left on the ground after emptying
 - mean 8 500; max 184 000
- viable ova left on hands of waste handlers
 - mean 90; max 2 300

VIP sludge drying


Diffusivity: 7.8×10⁻⁸ - 2.1×10⁻⁷ m²/s

Thermal conductivity : 55 W/m.K (79% moisture) 0.04 W/m.K (dry)

Calorific value: 11 to 13 MJ/kg sample

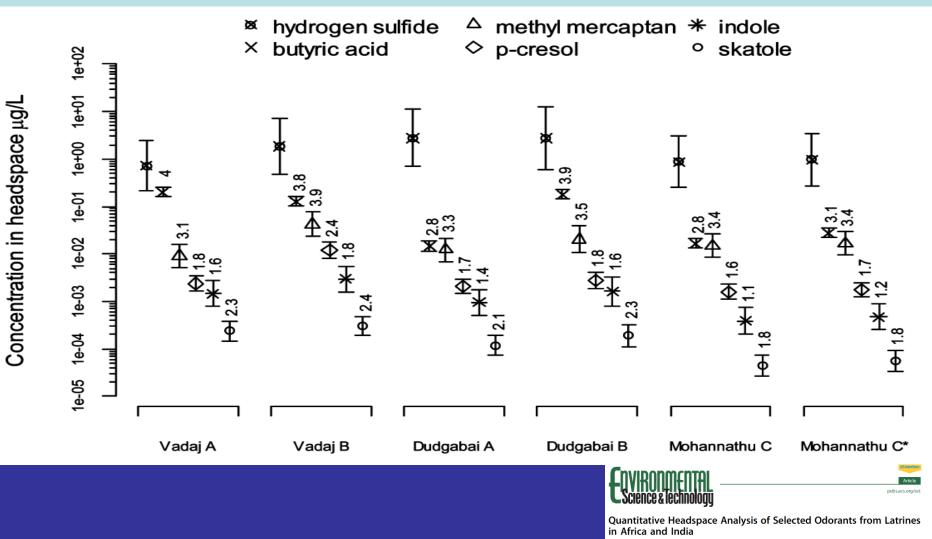

VIP sludge degradation

- Trash can be 25% of the volume
- Biodegradability decreases with depth

Water SA Vol. 39 No. 4 July 2013

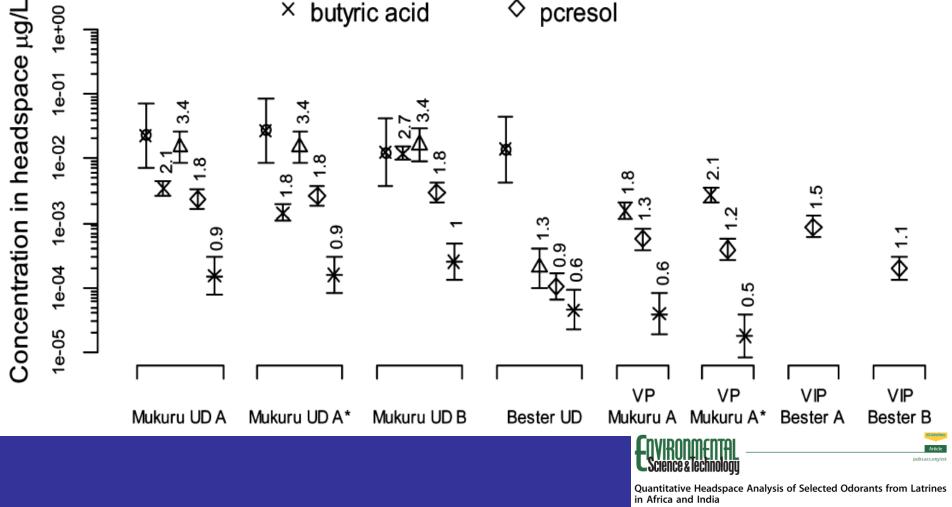
Odour – perceived intensity

Gas phase concentration μ g/L



Quantitative Headspace Analysis of Selected Odorants from Latrines in Africa and India

Charles Jean-François Chappuis, Yvan Niclass, Christine Vuilleumier, and Christian Starkenmann* Corporate R&D Division, Firmenich SA, P.O. Box 239, CH-1211 Geneva 8, Switzerland


Odour concentration and intensity - India

Charles Jean-François Chappuis, Yvan Niclass, Christine Vuilleumier, and Christian Starkenmann[®] Corporate R&D Division, Firmenich SA, P.O. Box 239, CH-1211 Geneva 8, Switzerland

Odour concentration and intensity - Africa

- hydrogen sulfide
- butyric acid х
- Δ methyl mercaptan * indole \diamond pcresol

Charles Jean-François Chappuis, Yvan Niclass, Christine Vuilleumier, and Christian Starkenmann* Corporate R&D Division, Firmenich SA, P.O. Box 239, CH-1211 Geneva 8, Switzerland

Other aspects to consider

- Need for Standard Methods
- Sampling
- Sample preservation and transboundary transport
- Safety, heath and hygiene
- Ethics and permissions
- Analyses from other regions
- Other faecal sludge laboratories are being set up
- Extend the range of analyses

Typical view of a pit – where on the Bristol Stool chart?

Acknowledgements

• Funders

 Bill & Melinda Gates Foundation, Water Research Commission, eThekwini Water and Sanitation, Eawag, London School of Hygiene and Tropical Medicine

BMGF grantees for sharing their data