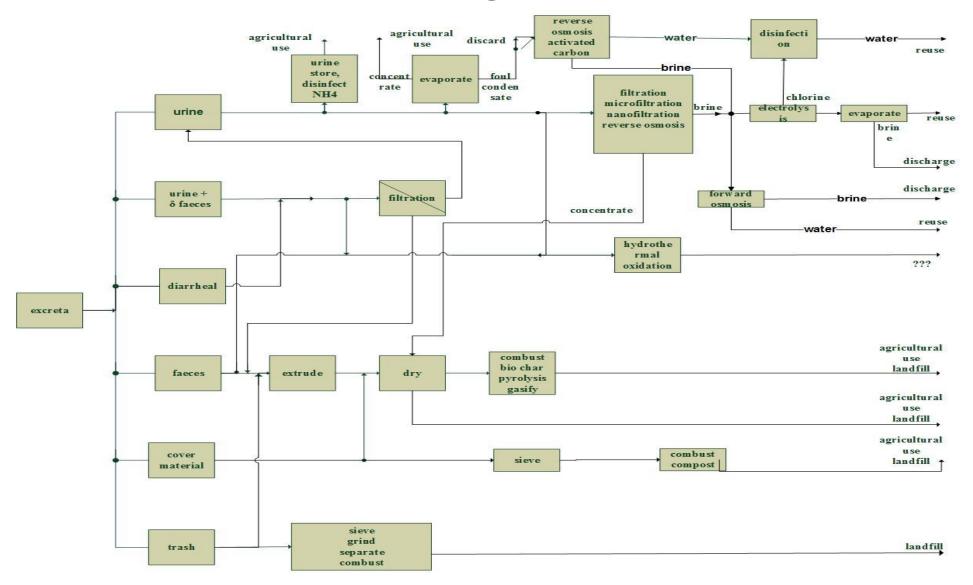


Data Acquisition and Field Support for Sanitation Projects

Pollution Research Group, University of KwaZulu-Natal,
Tina Velkushanova, Chris Buckley



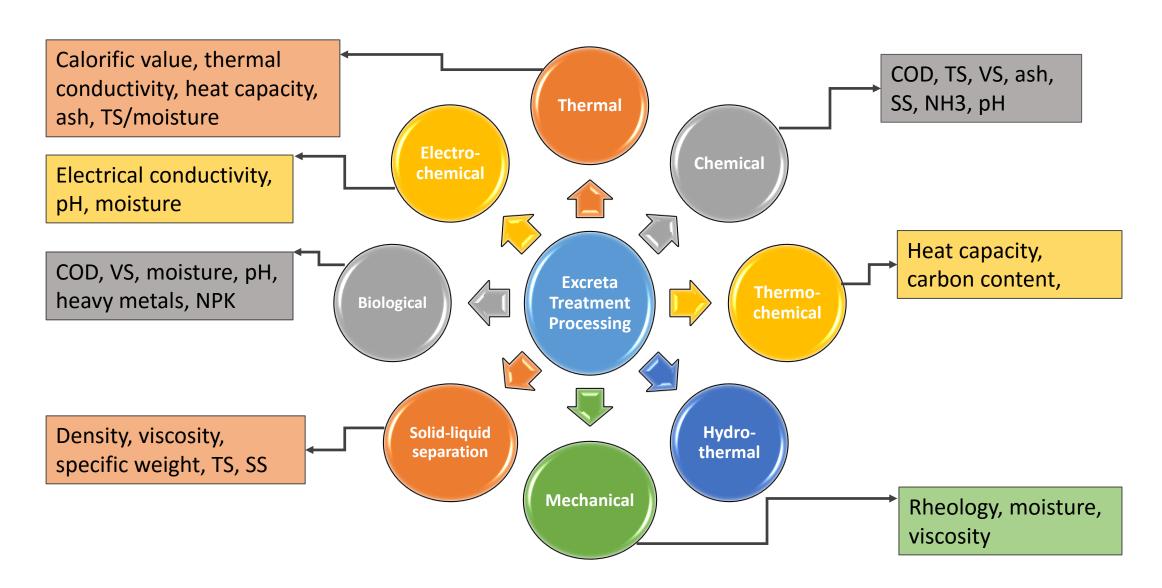
- Undertaking analysis on request
- Develop Standard Operating Procedures (SOPs) for excreta
- Undertaking analysis according to different treatment technologies
 - Front-end
 - Back-end
 - Final product

Excreta material flow diagram

disinfection
evaporation
reverse osmosis
activated carbon
electrolysis
filtration
microfiltration
nanofiltration
reverse osmosis
electrolysis
electro dialysis

forward osmosis adsorption nanofiltration

oxidation hydrothermal oxidation


extrude
dry
combust
pyrolysis
gasify
super critical
plasma arc gasify
char
smoulder

sieve

grind

compost

What data is essential for each process?

Methods tested/ data provided

Groups of properties	Property / analytical test	Equipment / method	Reason/ importance
Chemical properties	Moisture content Total dry solids	Oven 105 °C	 Mechanical behaviour – mixing, drying, flowing, viscosity, combusting Migration of pathogens Biodegradation potential
	Total volatile solids Ash content (fixed solids)	Furnace - 550 °C	 Show the ratio of organic to inorganic solids that will change over time; combustion potential; biodegradability potential
	Total suspended solids	Filter, dry	 Pit emptying and processing – indicating potential settling, clogging
	COD total	Closed reflux titrimetric method, microwave	 Indicate the organic content and the biodegradability rate of the sludge contents
	pH	pH probe	 pH affects the rate of degradation of the faecal sludge and the sanitising effects of ammonia. Indicates the corrosive effect on pit emptying and sludge treatment devices.
	Ammonia	Distillation	 Nutrient recovery; disinfection
	TKN (Total Kjeldahl Nitrogen)	Digestion and distillation	Nutrient recovery
	K (Potassium)	Spectroquant Tests	Nutrient recovery
	Total phosphate	Spectroquant Tests	Nutrient recovery
	Orthophosphate		

Methods tested/ data provided 2

Group of	Property / analytical	Equipment / method	Reason/ importance
properties	test		
	Density (solids, dry, bulk)	Mass balance & volume measurement (liquid volume displacement by solids)	 Pit emptying equipment & mechanical process design
	Particle size distribution (>5mm)	Wet sieving rig; Sieve shaker Set of sieves for dry and wet sieving.	 Pit emptying equipment & mechanical process design
Physical and	Particle size distribution (<5mm)	Malvern particle size analyser	 Pit emptying equipment & mechanical process design
mechanical	Sludge volume index (SVI)	30 minute settling test	 To estimate settling characteristics of sludge; pit emptying and processing
	Osmotic pressure	Osmometer	Vapour pressure, membrane processing
	Rheological properties	Parr rheometer	 Design parameters for pit emptying equipment; extruders and mechanical treatment
	Sludge penetration resistance	Penetrometer – lab and field scale	 Design parameters for pit emptying equipment; extruders and mechanical treatment

Methods tested/ data provided 3

Group of properties	Property / analytical test	Equipment / method	Reason/ importance
Thermal properties	Thermal conductivity	Thermal conductivity analyser	 Drying, combusting, heating potential, thermal treatment design
	Specific heat		
	Calorific value	Calorimeter	Combustion, heating potential
Biological properties	Parasites content (e.g. Ascaris)	External laboratory, microscope	 Identify the potential biohazard; Identify the need of pre- treatment before potential reuse
	Pathogens (e.g. E. <i>coli</i>)	Microscope, petri dish	 Identify the potential biohazard; Identify the need of pre- treatment before potential reuse

What else is missing?

• Stoichiometry of different excreta?

What could be improved?

• How?

Highlighted Challenges

- Extreme heterogeneity of faecal sludges and their characteristics
 - Geography and climate
 - Local diet
 - Toilet use
 - Frequency
 - "Wipers" vs "washers"
 - Wet vs dry
 - Number of users
 - Frequency of use
 - Frequency of sludge collection/ emptying
 - Disposal of other materials trash (detritus), grey water, chemical additives
- Difficulties in sampling highly heterogeneous; need for uniform method of collection and preparation
- How can we provide a data set that is useful for all grantees?